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ON AUTOMORPHISM GROUPS OF AFFINE SURFACES

S. KOVALENKO, A. PEREPECHKO, M. ZAIDENBERG

Abstract. This is a survey on the automorphism groups in various classes of
affine algebraic surfaces and the algebraic group actions on such surfaces. Being
infinite-dimensional, these automorphism groups share some important features of
algebraic groups. At the same time, they can be studied from the viewpoint of the
combinatorial group theory, so we put a special accent on group-theoretical aspects
(ind-groups, amalgams, etc.). We provide different approaches to classification,
prove certain new results, and attract attention to several open problems.
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1. Introduction

Our aim is to give a comprehensive survey of the automorphism groups of affine
algebraic surfaces and algebraic group actions on such surfaces. We are using several
different classifications of surfaces, according to the Makar-Limanov invariant, to the
rank of the automorphism group, etc. However, our ultimate goal is to approach
a reasonable classification of the automorphism groups themselves. These groups
are often infinite dimensional, and even ‘wild’ in a sense, so, we do not reach the
final goal. Nevertheless, we are trying to put some order in our present knowledge
on the subject, and to indicate difficult open problems. The authors apologize for
incompleteness of the reference list and of the overview of the cited literature. For
instance, we do not touch upon the recent progress in studies of complete algebraic
vector fields on affine surfaces, the Lie algebras of algebraic vector fields, the related
groups of (biholomorphic) automorphisms, etc., see, e.g., [1, 2, 29, 63, 74, 75, 78, 81]
and the references therein.
We provide also several new results, especially concerning the automorphism

groups of surfaces of classes (ML1) and (ML2), where one possesses by now a rather
complete knowledge. By contrast, we are far from a good understanding of the
automorphism groups of surfaces of class (ML0), that is, the Gizatullin surfaces.
Before passing to the content of the paper, we recall some general notions and

facts.

1.1. Classification according to the Makar-Limanov invariant.

1.1. Let X be a normal affine variety over an algebraically closed field K of char-
acteristic zero. The special automorphism group SAutX is the subgroup of AutX
generated by all its one-parameter unipotent subgroups ([3]). This group is triv-
ial if and only if X does not admit any nontrivial Ga-action. The Makar-Limanov
invariant ML(X) = OX(X)SAutX is the subalgebra of invariants of SAutX . The
normal affine varieties can be classified according to the transcendence degree of the
Makar-Limanov invariant or, which is the same, according to the Makar-Limanov
complexity of X , that is, the codimension of a general SAutX-orbit. Recall ([3])
that these orbits are locally closed subvarieties in X . One says that a variety X is
of class (MLi), i ∈ {0,1, . . . ,dimX}, if its Makar-Limanov complexity equals i.
We restrict below to the case dimX = 2. A normal affine surface X is of class

● (ML2) if X does not admit any A1-fibration over an affine curve, see [46,
Rem. 1.7] or [37, Lem. 1.6];
● (ML1) if X admits a unique such fibration;
● (ML0) if X admits at least two distinct such fibrations.

The surfaces of class (ML0) are also called Gizatullin surfaces, cf. Definition 5.1.
The surfaces of classes (ML0) and (ML1) are Ga-surfaces, which means that they
admit an effective algebraic action of the additive group Ga of the field K, while the
ML2-surfaces do not admit such an action. In this article we consider the additive
(resp. multiplicative) group Ga (resp. Gm) of the field as an algebraic group over
K.
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1.2. A derivation ∂ of a ring A is called locally nilpotent if for any a ∈ A, ∂na = 0 for
some n = n(a) ∈ N. For a normal affine surface X , the coordinate ring OX(X)

● does not admit any nonzero locally nilpotent derivation if X ∈ (ML2);
● admits a unique such derivation up to a factor, which is a rational function
on X , if X ∈ (ML1);
● admits two non-proportional such derivations if X ∈ (ML0).

1.3. There is a combinatorial counterpart of the ML-classification, see Lemma 1.4.
Let X be a normal affine surface, and let V be a completion of X with boundary
divisor D = V ∖X . Assume that (V,D) is a minimal NC-completion, that is, V is
smooth near D and D is a normal crossing divisor such that no (smooth, rational)
(−1)-component of D can be contracted without loosing the NC-property. Let ΓD
be the weighted dual graph of D. If X admits an A1-fibration, then (V,D) is in fact
an SNC-completion, and ΓD is a tree.
A vertex of ΓD is called a rupture vertex if either it is of degree at least three,

or the corresponding component of D is irrational. The complement in ΓD to all
rupture vertices consists of connected components called segments. A graph without
rupture vertices consisting of a single linear segment is called a chain.
A linear weighted graph is called admissible if all its weights are ≤ −2. Via bira-

tional transformations of (X,D), any non-admissible linear segment of ΓD can be
transformed into a segment with an end vertex of weight 0.

Lemma 1.4 ([46, Rem. 1.7]). The graph ΓD as in 1.3

● has only admissible extremal linear segments for X ∈ (ML2);
● is non-linear and has a non-admissible extremal linear segment for X ∈
(ML1) different from A1 ×A1

∗
1;

● is a chain (a zigzag) non-transformable into the linear chain with a sequence
of weights [[0,0,0]] for X ∈ (ML0).

1.2. Classification according to rank. The rank of an ind-group G acting mor-
phically and effectively on a variety X is the maximal dimension of an algebraic
torus contained in G. This rank does not exceed the dimension of X , and X is
toric in the case of equality. A surface X with rkAutX ≥ 1 is called a Gm-surface.
The rank distinguishes toric surfaces, non-toric Gm-surfaces, and surfaces without
Gm-actions; indeed, their ranks are 2,1, and 0, respectively.

1.3. A general classification scheme. The two independent classifications of nor-
mal affine surfaces, according to the rank of the automorphism group and according
to the Makar–Limanov complexity as defined before, give altogether 9 classes of
affine surfaces denoted (MLi, r), (i, r) ∈ {0,1,2}2, where r is the rank of AutX and
i the Makar-Limanov complexity of X .
To describe the automorphism groups of affine surfaces and the algebraic group

actions on them, one applies various means. Some of them found their place in our
survey. The content of the present notes is as follows.

● In Section 2 we introduce different classes of groups: ind-groups, nested
ind-groups, amalgams, bearable groups.
● In Section 3 we study classical examples of affine surfaces, including the
toric surfaces, along with a presentation of their automorphism groups as
amalgams.
● Section 4 contains generalities on algebraic group actions on affine surfaces;
● in Subsection 4.4 we classify affine surfaces of rank ≥ 1, along with one-
parameter groups acting on such surfaces, in terms of the DPD presentation.

1The surface X = A1 ×A1

∗ of class (ML1) admits an SNC-completion (X,D) with ΓD being the
linear chain with weights [[0,0,0]].
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● In Section 5 we consider the automorphism groups of the ML0-surfaces, also
called Gizatullin surfaces. We provide a classification of their one-parameter
subgroups. For some particular classes of Gizatullin surfaces, we describe
their automorphism groups as amalgams. The structure of the automorphism
groups of general Gizatullin surfaces remains mysterious.
● In Sections 6 we study the automorphism groups of A1-fibrations as nested
ind-groups.
● Sections 7 – 8 deal with A1-fibrations on affine surfaces. In Section 7 we
introduce Puiseux arc spaces and study the actions of automorphisms on
these spaces.
● In Section 8 this techniques is applied in order to describe the automor-
phism groups of A1-fibrations on affine surfaces in more detail. The neutral
component of such an automorphism group occurs to be a metabelian nested
ind-group of rank at most two, while the component group2 is at most count-
able, see Theorems 8.13, 8.25, and Corollary 8.26.

Acknowledgement. The authors are grateful to the referees for a thorough reading
and numerous useful remarks that allowed to improve essentially the presentation
and to eliminate several inaccuracies that slipped into the first draft of the paper.

2. Ind-groups, amalgams, and all this

2.1. Ind-groups. Recall (cf. [66, 74, 77, 107, 108, 109]) that an ind-variety is a
union of an ascending sequence of algebraic varieties Xi with closed embeddings
Xi ⊂Xi+1. An algebraic subvariety of such an ind-variety X is a subvariety of some
Xi. An ind-group G is an inductive limit G = limÐ→Σi of an increasing sequence of

algebraic varieties

Σ1 ⊂ Σ2 ⊂ . . . ⊂ Σn ⊂ . . .

with closed embeddings Σi ⊂ Σi+1, where G is endowed with a group structure such
that for each pair (i, j) ∈ N2 the multiplication (f, g) ↦ f ⋅ g−1 yields a morphism
Σi ×Σj → Σn(i,j) for some n(i, j) ∈ N. If all the Σi are affine algebraic varieties, then
G = lim
Ð→

Σi is called an affine ind-group. In particular, an (affine) ind-group is an

(affine) ind-variety.
The neutral component G○ of an ind-group G = lim

Ð→
Σi is defined as the inductive

limit of the connected components of Σi passing through the neutral element e ∈ G.
A morphism of ind-groups G = lim

Ð→
Σi and G′ = lim

Ð→
Σ′i is a group homomorphism

φ∶G→ G′ such that for any i ≥ 1, φ(Σi) ⊂ Σ′j for some j = j(i) ≥ 1, and φ∣Σi
∶Σi → Σ′j

is a morphism of varieties. Clearly, φ(G○) ⊂ G′○.
Two ind-group structures on the same abstract group G are equivalent if the

identity map yields an isomorphism of the corresponding ind-groups.
A subgroup H ⊂ G of an ind-group G = lim

Ð→
Σi is closed if for any i ≥ 1, the

intersection H ∩ Σi is closed in Σi. In the latter case H = lim
Ð→
(H ∩ Σi) is an ind-

group.
One says that an ind-group G = lim

Ð→
Σi acts morphically on a variety X if there is

an action G×X →X of G on X such that for each i ∈ N the restriction Σi ×X →X

is a morphism of algebraic varieties.

2That is, the group formed by the connected components.
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The following proposition is well known; see, e.g., [73, Lem. 2.2]3 and [74, Prop.
2.5]. The first (unpublished) proof of (a) is due to Bialynicki-Birula; cf. also [65,
Rem. after Cor. 1.2].

Proposition 2.1. Let X be an affine algebraic variety, and let I ⊂ OX(X) be a
proper ideal. The the following hold.

(a) The automorphism group AutX possesses a structure of an affine ind-group
acting morphically on X.

(b) Let Aut(X,I) be the subgroup of AutX of all automorphisms of X leaving
I invariant. Then Aut(X,I) is a closed ind-subgroup in AutX.

Proof. (a) Let A = OX(X). Fixing a closed embedding X ↪ An, consider the
following objects:

Ad = {p∣X ∣p ∈ K[x1, . . . , xn], deg p ≤ d} ⊂ A,
Vd = A

n
d ⊂Mor (X,An) ,

Wd = {ϕ ∈ Vd ∣ϕ(X) ⊂X} ⊂Mor (X,X) .
Clearly, Vd is a finite dimensional subspace of the K-vector space Mor (X,An), and
Wd is a closed (affine) algebraic subvariety in Vd. The map

Φd,d′ ∶Wd ×Wd′ →Wdd′ , (ϕ,ψ)↦ ψ ○ ϕ ,

is a morphism of algebraic varieties. Hence

Σ̃d ∶= Φ−1d,d(idX) ⊂Wd ×Wd

is a closed algebraic subvariety in Wd ×Wd for any d ≥ 1. Consider the natural
embeddings AutX ⊂Mor (X,X) ⊂Mor (X,An). We have

Σ̃d = {(ϕ,ϕ−1) ∣ϕ,ϕ−1 ∈Wd ∩AutX} .
Let Σd = pr1(Σ̃d) ⊂Wd ∩AutX . The morphism

pr1∶ Σ̃d → Σd, (ϕ,ϕ−1)↦ ϕ ,

is one-to-one. This allows to introduce a structure of an affine algebraic variety on
Σd borrowed from the one on Σ̃d, so that Σd ≅ Σ̃d.

Claim. With this algebraic structure on Σd, the following hold.

(i) AutX = ⋃∞d=1Σd;
(ii) Σd ⊂ Σd′ is a closed embedding for any d ≤ d′;
(iii) Σd → Σd, ϕ↦ ϕ−1 , is a morphism;
(iv) Φd,d′ ∣Σd×Σd′

∶Σd ×Σd′ → Σdd′ is a morphism;
(v) Σd ×X →X ⊂ An, (ϕ,x) ↦ ϕ(x), is a morphism.

Consequently, AutX = lim
Ð→

Σd is an ind-group acting morphically on X.

Proof of the claim. Statement (i) is immediate.

(ii) follows from the fact that Σ̃d = Σ̃d′ ∩ (Wd ×Wd) is closed in Wd′ ×Wd′ .

The map in (iii) amounts in interchanging the coordinates in Σ̃d ⊂Wd×Wd. Hence
this map is an automorphism of Σd.
Note that the map

Σ̃d × Σ̃d′ → Σ̃dd′ , ((ϕ,ϕ−1), (ψ,ψ−1)) ↦ (ψ ○ ϕ,ϕ−1 ○ ψ−1) ,
is a morphism. This implies (iv).

3When this preprint was finished, Hanspeter Kraft acknowledged the third author that Propo-
sition 2.1 and some other results in Section 2 will appear in a more general form in a forthcoming
paper [49], which is an extended version of [73]. We thanks Hanspeter Kraft for this information
and for sending a preliminary version of [49].
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In turn, (v) follows from the fact that the map

(Vd × Vd) × (An ×An)→ An ×An, ((ϕ,ψ), (x, y)) ↦ (ϕ(x), ψ(y)) ,
is a morphism. �

(b) Let I = (b1, . . . , bk), where bi ∈ A = OX(X), i = 1, . . . , k. Clearly, g ∈ Aut(X,I)
if and only if bi ○ g ∈ I ∀i = 1, . . . , k. We claim that the latter condition defines
a closed subset of Σd for any d ≥ 1. Indeed, by (a), given d and i, there exists
m = m(d, i) such that bi ○ g ∈ Am for any g ∈ Σd. Consider the map ψi∶AutX → A,
g ↦ bi ○ g. By virtue of (a), ψi,d = ψi∣Σd

∶Σd → Am ⊂ A is a morphism. Since I ∩Am
is a linear subspace of the finite dimensional vector space Am, the inverse image
ψ−1i,d(I∩Am) = ψ−1i (I)∩Σd is closed in Σd, as stated. It follows that Aut(X,I) ⊂ AutX
is a closed ind-subgroup. �

Remarks 2.2. 1. Let X and R be algebraic varieties. According to [100], a map
R → AutX is called an algebraic family of automorphisms of X if the action R×X →
X , (r, x) ↦ r(x), is a morphism of varieties. We call such an algebraic family affine
if R is an affine variety.
2. The neutral component of AutX in the sense of Ramanujam is the union of all

the irreducible subvarieties in AutX passing through the neutral element e ∈ AutX .
Clearly, this neutral component coincides with Aut○X defined at the beginning of
this section.

Lemma 2.3. Let X be an affine algebraic variety, and let τ ∶R → AutX be an
algebraic family of automorphisms of X. Consider an ind-group structure AutX =
lim
Ð→

Σd introduced in the proof of Proposition 2.1.a. Then the image τ(R) ⊂ AutX is

contained in Σd for some d ∈ N, and the map R → Σd is a morphism. Consequently,
τ ∶R → AutX is a morphism of ind-varieties.

Proof. We use the notation from the proof of Proposition 2.1.a. Fix a closed embed-
ding X ↪ An, which corresponds to a choice of generators a1, . . . , an of the K-algebra
A = OX(X). We have A = K[x1, . . . , xn]/I, where I ⊂ K[x1, . . . , xn] is the ideal of
relations.
We claim that the action morphism α∶R ×X → X extends to a morphism F =(F1, . . . , Fn)∶R × An → An, where Fi ∈ OR(R)[x1, . . . , xn] for i = 1, . . . , n. Indeed,

considering the induced homomorphism

α∗∶A = K[X]→ K[R ×X] = OR(R)⊗A = (OR(R)⊗K[x1, . . . , xn])/I ,
we choose for every i = 1, . . . , n a representative Fi ∈ OR(R)[x1, . . . , xn] of the element
α∗(ai) ∈ OR(R)[a1, . . . , an]. This gives a desired extension F = (F1, . . . , Fn) of α.
Let d = maxi=1,...,n degFi. Then F (r, ⋅) ∈ Wd for any fixed r ∈ R. This defines a

morphism τ ∶R →Wd. The family

τ ′∶R → AutX, τ ′∶ r ↦ τ(r)−1 ,
is again algebraic ([100]). Thus, τ ′(R) ⊂ Wd′ for some d′ ∈ N, and τ ′∶R → Wd′ is a
morphism. This yields a morphism

R → Σ̃max{d,d′}, r ↦ (τ(r), τ ′(r)) .
Finally, τ ∶R → Σmax{d,d′} ≅ Σ̃max{d,d′} is a morphism, see the proof of Proposition
2.1.a. �

The following corollary is immediate (cf. [73, Prop. 2.5]).

Corollary 2.4. Up to equivalence, the structure of an affine ind-group on AutX
introduced in the proof of Proposition 2.1.a does not depend on the choice of a closed
embedding X ↪ An.
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Definition 2.5. Let X be an affine variety. An element g ∈ AutX will be called
semisimple if there exists a finite-dimensional g-stable4 subspace V ⊂ OX(X) which
contains a system of generators a1, . . . , am of OX(X) and such that g∣V ∈ GL(V ) is
semisimple.

Recall that an algebraic quasitorus is a product of an algebraic torus and a finite
Abelian group.

Lemma 2.6. An element g ∈ AutX is semisimple if and only if g is contained in a
closed algebraic quasitorus T ⊂ AutX.

Proof. Assume that g ∈ AutX is semisimple, and let V ⊂ OX(X) be as in 2.5.
Then g∗ ∈ GL(V ∗) is contained in an algebraic torus T ′ ⊂ GL(V ∗). Let T ∗ be the
Zariski closure in T ′ of the cyclic group ⟨g∗⟩ ⊂ T ′ generated by g∗. Then T ∗ ⊂ T ′

is an algebraic quasitorus. Consider the natural embedding φ∶X ↪ V ∗. Clearly, g∗

leaves invariant the image φ(X) ⊂ V ∗, and g∗ ○ φ = φ ○ g. Hence also T ∗ stabilizes
φ(X). This yields an injective affine algebraic family T ∗ ↪ AutX . The image, say,
T ⊂ AutX of T ∗ is an algebraic quasitorus containing g. By Lemma 2.3, T ⊂ Σd for
some d ∈ N. We claim that T is closed in AutX . Indeed, let t ∈ T̄ ⊂ AutX . Then
both T̄ and t leave the subspace V invariant, and t∗ ∈ T ∗ ⊂ GL(V ∗). However, the
quasitorus T ∗ ⊂ GL(V ∗) is closed, hence t∗ ∈ T ∗, and so, t = φ−1 ○ t∗ ○ φ ∈ T . Thus,
T = T̄ is closed in AutX .
To show the converse, recall (see, e.g., [58, §8.6]) that any algebraic groupG acting

morphically on X acts locally finitely on OX(X), that is, each finite dimensional
subspace of OX(X) extends to a finite dimensional G-invariant subspace. This
implies that any g ∈ AutX contained in a closed algebraic quasitorus in AutX is
semisimple. �

2.2. Nested ind-groups.

Definition 2.7. We say that a group G is a nested ind-group if

G = lim
Ð→

Gi, where G1 ⊂ . . . ⊂ Gi ⊂ Gi+1 ⊂ . . .

is an increasing sequence of algebraic groups and their closed embeddings. The rank
of a nested ind-group G is defined as rkG = limi→∞ rkGi. If all the Gi are unipotent,
then we say that the nested ind-group G is unipotent. The unipotent radical Ru(G)
is the largest closed normal ind-subgroup of G such that any element g ∈ Ru(G) is
unipotent in Gi for all i sufficiently large.5

Remarks 2.8. 1. An algebraic group is a nested ind-group. By contrast, the
ind-group Z is not a nested ind-group.
2. A closed subgroup of a nested ind-group is nested. If G = lim

Ð→
Gi is nested, then

also its neutral component G○ = lim
Ð→

G○i is.
3. If G = lim

Ð→
Gi and Gi is connected for any i ∈ N, then G is. Conversely, if

G = lim
Ð→

Gi is connected as an ind-group, then G = lim
Ð→

G○i .

Definition 2.9. Let G be a nested ind-group, and let T be a maximal torus in G of
finite rank. The Cartan subgroup C○G(T ) associated to T is the neutral component
of the centralizer CG(T ) of T in G.
Clearly, C○G(T ) is a closed nested ind-subgroup of G, cf. Remarks 2.8.2–2.8.3.

Note that if rkG = 0, i.e., G○ is unipotent, then T = {1} and C○G(T ) = G○. In a

semisimple algebraic group G one has C○G(T ) = T , and in a product G̃ = G × U ,
where G is semisimple and U is unipotent, one has C○

G̃
(T ) = T ×U .

4Abusing notation, we denote by the same letter g the induced automorphism f ↦ f ○ g of the
algebra OX(X).

5Cf. the notions of a locally linear ind-group and of its unipotent radical in [28, I.3].
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In the following proposition we provide an analog of the classical fact on the
conjugacy classes in algebraic groups. Another analog of this fact is known to hold
in the group AutA2 ([47]), although the latter group does not admit a structure of
a nested ind-group.

Proposition 2.10. Let G = lim
Ð→

Gi be a connected nested ind-group. Then for any

element g of a Cartan subgroup C○G(T ), the conjugacy class ClG(g) of g is closed in
G.

Proof. Due to Remark 2.8.3 one may assume that all the Gi, i ≥ 1, are connected
algebraic groups. For any element g of a connected algebraic group H the conjugacy
class ClH(g) of g in H is an irreducible locally closed subvariety of H . We will use
the fact that an increasing sequence of irreducible locally closed subvarieties in an
algebraic variety stabilizes.
Let g ∈ C○G(T ). Then for i ≥ 1 sufficiently large we have T ⊂ Gi and g ∈ C○Gi

(T ).
Hence the conjugacy class ClGi

(g) of g is closed in Gi ([110, Prop. 6.14]). On the
other hand, for any j > 0,

ClG(g) ∩Gj = lim
Ð→
(ClGi

(g) ∩Gj)
is closed being an increasing union of closed irreducible subsets, which stabilizes.
Thus, ClG(g) is closed in G. �

In a nested ind-group of automorphisms, one has the following analog of the Levi
decomposition for a connected algebraic group ([93]; cf. [83, Thm. 4.10]).

Theorem 2.11. Let G = lim
Ð→

Gi be a connected nested ind-group such that the se-

quence rkGi is bounded above. Then G admits a Levi decomposition G = Ru(G)⋊L,
where L is a maximal reductive algebraic subgroup in G and Ru(G) is the unipotent
radical of G. Furthermore, any semisimple element g ∈ G is contained in a maximal
torus of G, and any two such tori are conjugated in G.

Proof. Due to Remark 2.8.3 one may assume that Gi is connected for any i ≥ 1. For
any i ≥ 1 consider a Levi decomposition Gi = Ui ⋊Li, where Ui = Ru(Gi). Since Gi is
connected, Li is connected as well for any i ≥ 1. Since the ranks of the Levi factors
Li are uniformly bounded, the dimensions dimLi are uniformly bounded, too. If
L = Lk is of maximal dimension, then L is a Levi subgroup of Gi for any i ≥ k. Thus,
Gi = Ui ⋊L ∀i ≥ k.
Let us show that Ui = Ui+1 ∩ Gi for i ≥ k. Indeed, since L ⊂ Gi ⊂ Ui+1 ⋊ L,

given (u, l) ∈ (Ui+1 ⋊ L) ∩ Gi, one has (u,1) = (u, l) ⋅ (1, l−1) ∈ Gi. Thus, Ui =
Ui+1∩Gi. Clearly, Ru(G) = lim

Ð→
Ui, and so, the first assertion follows. The remaining

conclusions hold because they hold for any connected algebraic subgroup Gi, i ≥ 1,
see, e.g., [58, Prop. 19.4 and Cor. 21.3.A]. �

Corollary 2.12. The conclusions of Theorem 2.11 hold for any connected nested
ind-group G = lim

Ð→
Gi, which acts morphically and faithfully6 on a quasi-projective

variety X.

Proof. It suffices to note that the ranks rkGi are bounded by dimX due to Propo-
sition 4.1.a and Remark 4.2. �

Remark 2.13. In the notation of Theorem 2.11, consider for any i ≥ 1 the subgroup
G′i = Ru(Gi) ⋊L of G. It is easily seen that G = lim

Ð→
Gi = lim

Ð→
G′i. So, we may assume

in the sequel that Gi = Ru(Gi) ⋊L share the same Levi factor for all i ≥ 1.

6We thank Hanspeter Kraft for indicating the latter assumption omitted in the previous version.
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Corollary 2.14. In the notation and convention of Theorem 2.11 and Remark
2.13, suppose that the unipotent radical Ru(G) is Abelian. Then there exists a
decomposition Ru(G) = ⊕∞j=1Hj such that Hj is normal in G for all j ≥ 1 and

Ru(Gi) =⊕i
j=1Hj.

Proof. Let as before Ui = Ru(Gi). Since the adjoint representation of L on the Lie
algebra LieGi is completely reducible, and the subalgebras LieUi and LieUi−1 are
L-stable, there is an L-stable subspace Vi ⊂ LieUi complementary to LieUi−1. By our
assumption, Ui is Abelian. Hence the Lie subalgebra Vi corresponds to a subgroup
Hi ⊂ Ui normalized by L and Ui = Ui−1 ⊕Hi. Now the assertions follow. �

Example 2.15. Let X be a normal affine surface, let µ∶X → B be an A1-fibration
over a smooth affine curve B, and let Aut(X,µ) be the group of all automorphisms
of X preserving µ. Then the neutral component Aut○(X,µ) is a nested ind-group
with an Abelian unipotent radical, see Corollary 8.26. Hence Corollary 2.14 applies
in this case.

Lemma 2.16. Let φ∶G → H be a morphism of nested ind-groups G = lim
Ð→

Gi and

H = lim
Ð→

Hj. Assume that the orders ∣Gi/G○i ∣, i ∈ N, are bounded above. Then φ(G)
is a closed nested ind-subgroup in H.

Proof. For a fixed index j consider the increasing sequence of algebraic subgroups
φ(Gi) ∩ Hj, i ∈ N, of the group Hj . Since their dimensions and the numbers of
connected components are bounded, this sequence stabilizes. Hence φ(G) ∩Hj is a
(closed) algebraic subgroup. �

Let X be an algebraic variety, and let G = lim
Ð→

Gi be a connected nested ind-

subgroup of AutX . Then G is algebraically generated in the sense of [3, Def. 1.1].
The following result is an analog of [3, Prop. 1.7] for nested ind-groups.

Proposition 2.17. Let X be an affine variety, and let G = lim
Ð→

Gi be a connected

nested ind-group, which is a closed subgroup of AutX. Then there exists i ≥ 1 such
that any G-orbit in X coincides with a Gi-orbit.

Proof. We may suppose that Gi ⊂ AutX is a closed, connected algebraic subgroup
for any i ≥ 1. We show first that for any x ∈ X , the G-orbit Gx ⊂ X coincides with
a Gi-orbit Gix for some i≫ 1. Indeed, the sequence {dimGix ∣ i = 1, . . .} stabilizes,
hence GNx = GN+1x = . . . for some N ≥ 1. The decreasing sequence of closed subsets{Gix ∖Gix ∣ i = N, . . .} also stabilizes, say, on an Mth step, where M ≥ N . Thus,
Gx = ⋃∞i=1Gix = GMx.
According to Corollary 2.12 and Remark 2.13 we may suppose that Gi = Ui ⋊ L

for any i ≥ 1, where Ui = Ru(Gi) is the unipotent radical and L is the Levi factor of
G. Furthermore, we have G = U ⋊L, where U = lim

Ð→
Ui is the unipotent radical of G.

If i ≥ 1 is such that Ux = Uix for any x ∈ X , then also Gx = Gix for any x ∈ X , as
stated. Thus, it suffices to prove the proposition assuming that G = U and Gi = Ui,
i ∈ N, are unipotent groups.
Let

m =max
x∈X
{dimUx} and mi = max

x∈X
{dimUix} .

By the first part of the proof, m = mi0 for some i0 ≥ 1. By the Rosenlicht Lemma,
there is a dense, open subset Ω ⊂ X such that dimUi0x =mi0 =m = dimUx for any
x ∈ Ω. It is well known that any orbit of a unipotent algebraic group acting on an
affine variety is closed and isomorphic to an affine space (see, e.g., Proposition 4.1.d
below). It follows that Ui0x ≅ A

m. By the first part of the proof, Ux = Ujx for some
j ≥ 1. Hence also Ux ≅ Am. Since Ui0x ⊂ Ux, it follows that Ux = Ui0x for any x ∈ Ω.
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Indeed, an open subset of an affine space isomorphic to an affine space coincides
with the ambient affine space.
Let X1, . . . ,Xk be the irreducible components of X ∖Ω. Assuming that dimX > 0

one has dimXj < dimX for any j = 1, . . . , k. By induction on dimX we may
suppose that for any Xj , j = 1, . . . , k, the orbits of U ∣Xj

coincide with those of Uij ∣Xj

for some ij ≥ 1 and for any j = 1, . . . , k. Then the same conclusion holds for X with
i =max{i0, i1, . . . , ik}. �

2.3. Amalgams. Recall ([105], [106]) that a tree of groups (T,G) consists in a
combinatorial tree T along with a collection G of vertex groups (GP )P ∈vertT , edge
groups (Gν)ν∈edgeT , and for each edge ν = [P,Q] of T , monomorphisms Gν → GP

and Gν → GQ identifying Gν with (common) subgroups of the vertex groups GP and
GQ. We will suppose that any Gν is a proper subgroup of GP and GQ.
Given such a tree of groups (T,G), one can construct a unique group G = lim

Ð→
(T,G)

called the free amalgamated product, or simply the amalgam of (T,G), where G is
freely generated by the subgroups (GP ) and (Gν) with unified subgroups GP ∩GQ =
Gν for each ν = [P,Q] ∈ edgeT . We refer to [106, Ch. I, §§4,5] for the existence
and uniqueness of the amalgam G = lim

Ð→
(T,G), its presentation and the universal

property. A subgroup H ⊂ G is called of bounded length if there exists an integer
N > 0 such that each element of H can be decomposed into a product of at most N
elements of the vertex and edge groups.
For the reader’s convenience, we sketch a proof of the following theorem.

Serre’s Theorem 2.18 ([106, Ch. I, §4.3, Thm. 8 and §4.5, Exerc. 2]). Any
subgroup of bounded length of an amalgam G = lim

Ð→
(T,G) is contained in a conjugate

to one of the factors GP , where P ∈ vertT .

Proof. We follow the lines of the proof of Theorem 8 in [106, Ch. I, §4.3]. Let T be
a graph such that

● each vertex in vertT is a left coset g ⋅GP , g ∈ G, P ∈ vertT ;
● each edge in edgeT is a left coset g ⋅Gν , g ∈ G, ν = [P,Q] ∈ edgeT .

Abusing notation, we let Pg = g ⋅GP and νg = g ⋅Gν . Thus, νg = [Pg,Qg]. It is known
(see [106, Ch. I, §4, Thm. 10], [113, 0.6-0.8]) that T is a tree containing T as a
subtree. Indeed, consider a (reduced) word g = a1 ⋅ . . . ⋅an, where ai ∈ ⋃Q∈vertT GQ are
such that ai, ai+1 do not belong to the same vertex group GQ, and an /∈ GP . Then
the coset g ⋅GP can be joint with GP via a sequence of cosets {gk ⋅GP}k=1,...,n, where
gk = ak ⋅ . . . ⋅ an, so that g = g1. This gives a path (P,Pgn , . . . , Pg1 = Pg) joining the
vertices P and Pg in T . Hence the graph T is connected. The absence of cycles in
T follows from the fact that G = lim

Ð→
(T,G) is a free amalgamated product.

There is a natural action of G on T ,

h∶Pg ↦ Phg, νg ↦ νhg , for h ∈ G

with a fundamental domain T . Under this action, the stabilizers of vertices are
conjugated subgroups of the vertex groups:

StabG(Pg) = g ⋅GP ⋅ g−1 ⊂ G.

Thus, a subgroup H ⊂ G fixes a vertex Pg if and only if g−1 ⋅H ⋅ g ⊂ GP . Similarly,
H fixes an edge νg if and only if g−1 ⋅H ⋅ g ⊂ Gν . It follows that, if νg = [Pg,Qg] is
fixed by H , then the both vertices Pg,Qg are fixed as well. The latter means that
H acts on the set of edges of T without reversions.
To prove the theorem, it suffices to show that any subgroup H ⊂ G of bounded

length fixes some vertex Pg ∈ vertT . We claim that in fact any orbit H ⋅Pg ⊂ vertT ,
where Pg ∈ vertT , contains a fixed point of H . Indeed, suppose that the lengths of
the elements h ∈ H are bounded by l ∈ N. Then the diameter of the orbit H ⋅ Pg is
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bounded by 2l with respect to the graph metric on T . The subtree Hg ⊂ T spanned
by the orbit H ⋅ Pg is stable under the action of H . Hence, the set of extremal
vertices of Hg is stable as well, along with the adjacent extremal edges. Suppressing
the extremal vertices and edges of Hg yields anH-stable subtree H′g ⊂ Hg of diameter
diamH′g = diamHg − 2 ≤ 2l − 2. Continuing in this way, one arrives at a nonempty,

H-stable subtree H(k)g ⊂ Hg of diameter ≤ 1, which consists then either of a single
vertex, or of a single edge. Anyway, its vertices are fixed under the action of H . �

Remark 2.19 (Pushing forward amalgamated free product structures ). Let X ′ →X

be an étale Galois covering with the Galois group Γ, where X and X ′ are affine
algebraic varieties and Γ is finite. Assume that every automorphism α ∈ AutX
admits a lift to an automorphism α̃ ∈ AutX ′. By the Monodromy Theorem, the
latter holds, for instance, if K = C and X ′ → X is the (finite) universal covering.
Clearly, under this assumption the subset in AutX ′ of all lifts of the automorphisms
in AutX coincides with the normalizer NormAutX′(Γ) of Γ in AutX ′. Furthermore,
we have AutX ≅ NormAutX′(Γ)/Γ.
Assume that AutX ′ admits a structure of an amalgamated free product AutX ′ ≅

A′ ∗C′ B′, where C ′ = A′ ∩B′ ⊃ Γ. Then we have the inclusion

(1) NormAutX′(Γ) ⊇ (NormA(Γ)) ∗NormC(Γ) (NormB(Γ)) .
This inclusion can be strict, in general. However, in case of equality the following
holds (cf. [5, Lem. 4.14]).

Lemma 2.20. In the setup as before, assume that the equality holds in (1). Then
AutX ≅ A ∗C B is an amalgam of A = NormA′(Γ)/Γ and B = NormB′(Γ)/Γ along
the joint subgroup C = A ∩B = NormC′(Γ)/Γ.
2.4. Bearable automorphism groups. Let us introduce the following notions.

Definition 2.21. Let G = lim
Ð→
(T,G) be an amalgam of a tree (T,H) of groups HP ,

P ∈ vertT . We say that G is α-bearable, where α is a cardinal number (e.g., finitely
bearable, countably bearable, etc.), if

● vertT has cardinal at most α;
● HP is a nested ind-group for any P ∈ vertT ;
● any edge group is a proper subgroup of the corresponding vertex groups.

A group will be called bearable if it is α-bearable for some cardinal α, and unbearable
otherwise.

Remarks 2.22. 1. It is easily seen that a nontrivial bearable group G = lim
Ð→
(T,G)

is a nested ind-group if only if vertT consists of a single vertex.
2. A connected bearable group of automorphisms of an affine algebraic variety X

is algebraically generated in the sense of [3, Def. 1.1]. Hence its orbits are locally
closed smooth subvarieties of X ([3, Prop. 1.3]).
3. For a smooth affine surface X , the group SAut(X) generated by its one-

parameter unipotent subgroups (see 1.1) can have an open orbit in X , which is not
closed. The corresponding examples are due to Gizatullin, Danilov, and the first
author, see [70] and the references therein.
4. In all known examples of bearable automorphism groups of affine surfaces,

the edge groups are linear algebraic groups. In these examples, infinite-dimensional
nested groups are the automorphism groups of A1-fibrations. The intersection of
two such groups preserves a pair of distinct A1-fibrations, and so, occurs to be an
algebraic group (usually a quasitorus); cf., e.g., Example 3.4.

It is well known ([65, Cor. 4.2], [113]) that the conclusion of Serre’s Theorem 2.18
holds for any algebraic subgroup of AutA2, where AutA2 is endowed with its usual
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amalgam structure. More generally, we have the following analog 2.24 of Serre’s
Theorem 2.18. It will be used on several occasions in what follows. We adopt the
following convention.

2.23. Convention. Till the end of this section, that is, in 2.24–2.32, and also in
3.11, 4.10, and 5.6, we suppose that the ground field K is uncountable.

Proposition 2.24. Let G = lim
Ð→
(T,G) be a countably bearable group equipped with

a structure of an ind-group G = lim
Ð→

Σi. Then any algebraic subgroup7 H ⊂ G is
conjugated to an algebraic subgroup H ′ of one of the nested ind-groups GP , P ∈
vertT . If, in addition, the vertex groups GP , P ∈ vertT , are closed in G, then H

and H ′ are as well.

In the proof we use the following simple lemma.

Lemma 2.25. Let E be an algebraic variety, and let A1 ⊂ A2 ⊂ . . . ⊂ E be an
increasing sequence of constructible subsets such that E = ⋃i∈NAi. Then E ⊂ Ak for
some k ∈ N.

Proof. Since the increasing sequence of closed subsets Ā1 ⊂ Ā1 ⊂ . . . exhausts E and
the base field K is uncountable, there exists k0 > 0 such that Āk0 = E. Indeed,
otherwise dim Āi < dimE for any i ≥ 1, and so, E is a countable union of closed
subsets of smaller dimension, which is impossible.
The complement E′ = E ∖Ak0 is a proper closed subset of E. Applying the same

argument to the ascending sequence of constructible subsets A′i = Ai∩E
′
j , i = 1,2, . . .,

and to any irreducible component Ej of E′, j = 1, . . . , l, one can find k1 > 0 such

that E′ = A′
k1
. Continuing in this way, we construct a strictly descending sequence

E ⊃ E′ ⊃ E′′ ⊃ . . . of closed subsets of E. Since E is Noetherian, this sequence is
finite. Thus, E ⊂ Ak for k = max{k0, k1, . . . , kn}, where n + 1 is the length of the
constructed descending sequence. �

Corollary 2.26. Let H = lim
Ð→

Hi be an ind-variety, A1 ⊂ A2 ⊂ . . . ⊂ H be an in-
creasing sequence of constructive subsets such that H = ⋃∞i=1Ai, and E ⊂ H be an
algebraic subset. Then E ⊂ Ak for some k ∈ N.

Hint. Apply Lemma 2.25 to the sequence E ∩Ai, i = 1,2 . . . �

Proof of Proposition 2.24. To apply Serre’s Theorem 2.18, we need to establish that
H is of bounded length in the amalgam G = lim

Ð→
(T,G). Let GP = lim

Ð→n
ΣP,n be the

structure of a nested ind-group on the vertex group GP for P ∈ vertT . Given a finite
sequence

τ = ((P1, n1), . . . , (Pl, nl)) ∈ ((vert T ) ×N)l ,
consider the morphism ΣP1,n1

× . . . × ΣPl,nl
→ G induced by the multiplication. Its

image Rτ is a constructible subset of the variety Σi for some i ∈ N. The amalgam
G = lim
Ð→
(T,G) is covered by these constructible sets. Any two such sets Rτ ′ and Rτ ′′

are contained in a third one Rτ , and the collection {Rτ}τ is countable. Hence one
can choose an increasing sequence Rτ1 ⊂ Rτ2 ⊂ . . . ⊂ G such that G = ⋃i∈NRτi .
Let E be an algebraic subvariety of G. Due to Corollary 2.26, E ⊂ Rτi for some

τi ∈ ((vertT ) ×N)l, that is, E is of bounded length (≤ l).
In particular, any algebraic subgroup H of G has bounded length. By Serre’s

Theorem 2.18, H is conjugated to a subgroup, say, H ′ of a vertex nested ind-group
GP for some P ∈ vertT . A conjugation in an ind-group G is an automorphism of
G viewed as an ind-variety. Hence H ′ ⊂ GP ⊂ G is again an algebraic subgroup.

7By an algebraic subgroup H in an ind-group G we mean an algebraic subvariety of G, which
is also a subgroup of G, such that the both structures on H give an algebraic group structure.
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Therefore, it is contained in some algebraic subgroup ΣP,n ⊂ GP , and so, is closed
in ΣP,n and then also in GP . It is closed in G provided GP is closed in G, and then
also H is closed in G. �

2.5. Algebraic subgroups of bearable groups. In the sequel we need the fol-
lowing fact. 8

Theorem 2.27. Let G be a reductive algebraic group. Then the set of conjugacy
classes of connected reductive subgroups of G is at most countable.

The proof is based on the following result of Richardson ([102, Cor. 11.5(b) and
Prop. 12.1], see also [103, Thm. 8.1]). Alternatively, the lemma can be deduced from
the classification of semisimple subgroups of reductive groups started in [32].

Lemma 2.28. The set of conjugacy classes of connected semisimple algebraic sub-
groups of a reductive algebraic group G is finite.

Proof of Theorem 2.27. Let H ⊂ G be a connected reductive subgroup. Consider the
Levi decompositionH = S ⋅T , where T = RadH is a central torus inH and S = [H,H]
is the commutator subgroup, see [15, Prop. 2.2]. Since S is semisimple, its conjugacy
class in G is chosen among a finite set of such classes, see the claim. The torus T
is contained in the centralizer CG(S). Together with S, the centralizer CG(S) also
runs over a finite set of conjugacy classes in G, along with a maximal torus in
CG(S) which contains T , since any two maximal tori in CG(S) are conjugated.
Furthermore, the conjugation by elements of CG(S) act trivially on T , hence T
is contained in any maximal torus of CG(S). Fixing one of them, say, T , by the
rigidity of subtori of T there is at most countable number of possibilities to choose
T ⊂ T . The conjugacy class of H = S ⋅T is then also chosen among at most countable
number of such classes. �

The following extension of Theorem 2.27 to the reductive subgroups in countably
bearable groups will be used in § 5.2, see Corollary 5.6.

Proposition 2.29. Suppose that the ground field K is uncountable. Then in any
countably bearable group G, the set of conjugacy classes of connected reductive alge-
braic subgroups is at most countable.

Proof. Any connected reductive algebraic subgroup F in a nested group H = lim
Ð→

Hi

is contained in an algebraic subgroup Hi for some i, and, moreover, in a maximal
connected reductive subgroup of Hi. By the Mostow decomposition theorem, any
two maximal connected reductive subgroups are conjugated inHi. By Theorem 2.27,
the conjugacy class of F in Hi runs over at most countable set of such classes. It
follows that the set of conjugacy classes of connected reductive algebraic subgroups
of H is at most countable.
By Proposition 2.24, any algebraic subgroup of the countably bearable group G

is conjugated to an algebraic subgroup of one of the countable collection of gener-
ating nested ind-groups. Hence the set of conjugacy classes of connected reductive
algebraic subgroups of G is at most countable. �

Remark 2.30. The same argument shows that in an α-bearable group AutX of
rank r the set of conjugacy classes of r-tori has cardinality at most α.

Example 2.31. Consider, for instance, the Danielewski surface Sn = {xny−(z2−1) =
0} in A3. The group AutSn is 2-bearable, see Theorem 5.26. However, the group
Aut(Sn ×A1) is not finitely bearable. Indeed ([24]), this group of rank 2 contains a
sequence of pairwise non-conjugated 2-tori. Is this group countably bearable?

8The authors are grateful to V. Arzhantsev, R. Avdeev, M. Borovoi, M. Brion, D. Panushev,
G. Soifer, D. Timashev, and E. Vinberg for useful discussions and indications.
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Similarly, using Proposition 2.24 we obtain the following result. Recall that two
A1-fibrations on an affine variety X are called equivalent if one can be transformed
into the other by an automorphism of X .

Proposition 2.32. Suppose that the ground field K is uncountable. Let X be a
normal affine variety. Assume that X does not admit a unipotent group action with
a general orbit of dimension ≥ 2. 9 If the group Aut○X is α-bearable for some
cardinal α ≤ ℵ0 10, then the set of non-equivalent A1-fibrations on X over affine
bases is of cardinality at most α.

Proof. Let Aut○X = lim
Ð→
(T,G), where (T,G) is a tree of nested ind-groups (GP )P ∈vertT ,

where vertT is a set of cardinality α.
For any A1-fibration µ∶X → Z, where Z is a normal affine variety, one can find a

one-parameter unipotent subgroup Uµ ⊂ AutX acting along the fibers of µ.
Assume to the contrary that the set of pairwise non-equivalent A1-fibrations on

X with affine bases is of cardinality larger than α. By Proposition 2.24, any one-
parameter group Uµ is conjugated to a subgroup U ′µ of one of the vertex groups
GP , P ∈ vertT . From our assumption, for some vertex P ∈ vertT , the vertex group
GP contains at least two one-parameter unipotent subgroup U ′µ ⊂ AutX , which act
along pairwise non-equivalent A1-fibrations on X .
Since GP = lim

Ð→
GP,n is a nested ind-group, any one-parameter unipotent subgroup

in GP is contained in some algebraic subgroup GP,n. It follows that for some n ≥
1, the algebraic group H = GP,n contains at least two unipotent one parameter
subgroups U ′µ1 , U

′
µ2

acting along two non-equivalent A1-fibrations µi∶X → Zi, i = 1,2.
Let Umax be a maximal unipotent subgroup ofH . 11 Since any two such subgroups

are conjugated, any one-parameter unipotent subgroup U ⊂ H is conjugated to a
subgroup of Umax. Hence Umax contains two one-parameter unipotent subgroups, say,
U1, U2 acting onX along two non-equivalent A1-fibrations. It follows that the general
orbits of Umax in X are at least two-dimensional, contrary to our assumption. �

3. Automorphism groups and amalgams: the first examples

3.1 (Classical surfaces). In this section we describe the automorphism goups of the
surfaces

(2) A2, A1 ×A1
∗, (A1

∗)2, Vd,e = A
2/µd,e, P2 ∖C, and (P1 × P1) ∖∆ ,

where C ⊂ P2 is a smooth conic, ∆ ⊂ P1 ×P1 the diagonal, and for any 1 ≤ e < d with
gcd(d, e) = 1, µd,e ⊂ GL(2,K) stands for the cyclic group {diag(ζ, ζe) ∣ ζd = 1}. For
any one of these surfaces, its automorphism group carries an amalgam structure.

3.2 (Toric affine surfaces). These are the normal affine surfaces X with the group
AutX of rank 2. Any toric affine surface is one from the list

(3) A2, A1 ×A1
∗, (A1

∗)2, and Vd,e .

The torus action on X comes from the action of the diagonal 2-torus T on A2

(see [18]). The smooth toric surfaces A2, A1 × A1
∗, and (A1

∗)2 are the underlying
homogeneous spaces of the solvable algebraic groups G2

a, AffA1 ≅ Ga ⋊ Gm, and
T ≅ G2

m, respectively. The toric affine surfaces fall into 3 classes as follows:

● (ML0,2) = {A2, Vd,e};
● (ML1,2) = {A1 ×A1

∗};
● (ML2,2) = {(A1

∗)2}.
9The latter holds, in particular, for any affine surface different from A2, see Proposition 4.1(b).
10In particular, Aut○X is countably bearable.
11This means that Umax is the set of the unipotent elements in a Borel subgroup of H .
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In 3.3–3.6 we describe their automorphism groups.

3.3 (The group AutA2). By the Jung–van der Kulk Theorem12 (see [65, Thm. 2] and
the references therein), AutA2 is the amalgamated free product A∗CB of the affine
group A = Aff(A2) and the de Jonquères subgroup B = J(A2) over their intersection
C = A∩B. The solvable group J(A2) of rank 2 can be decomposed as J(A2) ≅ U⋊T,
where the unipotent radical U = Ru(J(A2)) is Abelian and consists of the triangular
transformations (x, y)↦ (x+f(y), y) with f ∈ K[y]. In particular, J(A2) is a nested
solvable ind-group, see Definition 2.7. More pecisely, J(A2) is an inductive limit
of a sequence of solvable, connected affine algebraic groups of rank 2 with Abelian
unipotent radicals.
It follows that any algebraic subgroup G ⊂ AutA2 is conjugate to a subgroup of

one of the factors Aff(A2) and J(A2), see [26], [64, 4.3–4.4], [113]. If G is conjugate to
a subgroup of J(A2), then G is solvable of rank ≤ 2. Hence, if a subgroup G ⊂ AutA2

is algebraic and non-solvable, then G is conjugated to a subgroup of Aff(A2) (cf. [65,
Cor. 4.4.]). Any reductive subgroup G ⊂ AutA2 is linearizable, i.e., is conjugated
to a subgroup of GL(2,K) ([76, Thm. 2.3]). Therefore, it is conjugated either to a
subgroup of T, or to SL(2,K), or finally to GL(2,K).
3.4 (Automorphism groups of singular toric affine surfaces). For the toric affine
surfaces X = A2/µd,e of class (ML0), there are analogs of the Jung-van der Kulk and
Kambayashi-Wright Theorems, see [5, Thms. 4.2, 4.15, 4.17]. Once again, AutX
is an amalgamated free product A+ ∗C A−, where C = A+ ∩ A−. To describe this
decomposition in more detail, one has to distinguish between the following cases:

(i) e = 1;
(ii) e2 ≡ 1 mod d and e ≠ 1;
(iii) e2 /≡ 1 mod d.

Note that the involution τ ∶ (x, y) ↦ (y, x) acting on A2 normalizes the cyclic
subgroup µd,e in GL(2,K) in cases (i) and (ii), and does not normalize it in case
(iii).
In case (i) X = A2/µd,1 is the Veronese cone Vd, i.e. the affine cone over a rational

normal curve in Pd. Since µd,1 ⊂ T is central, the standard SL(2,K)-action on A2

descends to Vd. The complement to the vertex of Vd is the open SL(2,K)-orbit; the
same is true for the natural GL(2,K)-action on Vd. Thus Vd is a quasihomogeneous
SL(2,K)-variety.
The amalgam structure

AutX ≅ A+ ∗C A−, where C = A+ ∩A− ,

is naturally related to that on AutA2, see 3.3. Consider the normalizer

N +d,e = NormJ(A2)(µd,e) = Ud,e ⋊T ⊂ J(A2) ,
where

Ud,e = {(x, y)↦ (x + f(y), y) ∣f ∈ yeK[yd]} ⊂ U .
In case (i) we have

A+ = N +d,1/µd,1 and A− = GL(2,K)/µd,1
(cf. [26, §11]). Similarly, in case (ii)

A+ = N +d,e/µd,e and A− = ⟨T, τ⟩/µd,e .
Finally, in case (iii)

A± = N ±d,e/µd,e with N −d,e = τN
+
d,eτ .

12Valid over an arbitrary field.
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3.5 (The group Aut(A1 ×A1
∗)). For the surface X = A1 ×A1

∗ of class (ML1) we have

AutX ≅ Aut○X ⋊ (Z ⋊ (Z/2Z)) = (U ⋊T) ⋊ (Z ⋊ (Z/2Z)) ,
where the factor Z is generated by the transformation (x, y) ↦ (xy, y), the factor
Z/2Z by the involution (x, y) ↦ (x, y−1), and the Abelian unipotent radical U of
AutX is

U = {exp (p(y) d
dx
) ∶ (x, y)↦ (x + p(y), y) ∣ p(y) ∈ K[y, y−1]} .

The group AutX is solvable, and so, any algebraic group acting effectively on A1×A1
∗

is as well. In fact, for any affine surface of class (ML1) the automorphism group has
similar properties, see Section 6.

3.6 (The group Aut(A1
∗)2). If X = (A1

∗)2, then
AutX = {(x, y)↦ (t1xayb, t2xcyd) ∣ ( a bc d ) ∈ GL2(Z), (t1, t2) ∈ T} ≅ T ⋊GL2(Z).

Indeed, AutX surjects onto the automorphism group of the multiplicative group

O×X(X) = {txayb ∣ t ∈ K∗, a, b ∈ Z}
of the ring OX(X).
3.7 (The group Aut((P1 ×P1)∖∆)). The surface X ′ = (P1×P1)∖∆ is isomorphic to
the smooth quadric in A3 with equation xy−z2 = −1. The group AutX ′ was studied
in [26, 10.1], [80, §2.1, Thm. 4], and [84]. The result in [80] can be interpreted as
follows. There is an amalgam

AutX ′ ≅ A′ ∗C′ B′ with C ′ = A′ ∩B′ ≅ Gm × ⟨τ⟩ ,
where τ ∶ (u, v)↦ (v, u) is the involution interchanging the factors of P1 × P1,

(4) A′ = Aut(P1 × P1,∆) ≅ PSL(2,K) × ⟨τ⟩ ,
and

(5) B′ = (U ′∞ ⋊Gm) ⋊ ⟨τ⟩ with U ′∞ = Ru(B′) ≅ K[t′]
being the unipotent radical of B′. In particular, A′ is semisimple and B′ is solvable
of rank 1. In the affine coordinates (u, v) in P1 × P1, where u = u0/u1 and v = v0/v1,
we have

U ′∞ ⋊Gm = {(u, v)↦ (cu + P, cv + P ) ∣ c ∈ Gm, P ∈ K [ 1

u − v
]} .

3.8 (The group Aut(P2 ∖C)). For X = P2 ∖C the group AutX was studied in [26,
§2]. By loc.cit., there is an amalgam AutX ≅ A ∗C B with

A = Aut(P2,C) ≅ SO(3,K) ≅ PSL(2,K) and B = U∞ ⋊Gm ,

where U∞ ≅ K[t] and C = A ∩B ≅ Aff(A1).
Remark 3.9. The amalgam in 3.8 is pushforward of that in 3.7 via the construction
of Remark 2.19. Indeed, the surface X ′ = (P1 × P1) ∖ ∆ is the Galois covering
of X = P2 ∖ C, and more precisely, X = X ′/Z2, where Z2 = ⟨τ⟩. In the affine
coordinates (u, v), the quotient morphism P1 × P1 → P2 is given by the elementary
symmetric polynomials in two variables via the classical Vieta formulas; cf. [37,
Ex. 5.1]. The Galois Z2-covering X ′ → X being the universal covering, we have
AutX ≅ NormAutX′(τ)/⟨τ⟩. A comparison of the explicit formulas in [26, (2.4.3;l)]
and [80, §2] yields the isomorphism

NormAutX′(τ) ≅ NormA′(τ) ∗NormC′(τ)
NormB′(τ) ,

where

NormA′(τ) = A′ ≅ PSL(2,K) × ⟨τ⟩ and NormB′(τ) = B0 × ⟨τ⟩ ⊂ B′,
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and where

B0 = {(u, v)↦ (cu + P, cv + P ) ∣ c ∈ K×, P ∈ K[ 1

(u − v)2 ]} = U∞ ×Gm

and U∞ = K[t′2] ⊂ U ′∞ = K[t′] with t′ = 1
u−v . Finally,

A ≅ NormA′(τ)/⟨τ⟩ = A′/⟨τ⟩ ≅ PSL(2,K)
and

B ≅ NormB′(τ)/⟨τ⟩ = B0 ≅ U∞ ×Gm .

Summarizing the results in 3.3-3.8 we arrive at the following conclusion.

Theorem 3.10. For any surface X in (2) the neutral component Aut○X ≅ A○⋆C○B○
is finitely bearable, where A○, B○, and C○ = A○∩B○ are connected, and either A○ and
B○ are both solvable nested ind-groups, or A○ is such a group and B○ is a reductive
affine algebraic group.

Corollary 3.11. 13 Suppose that the base field K is uncountable. Let X in (2) be
one of the surfaces A1 ×A1

∗, (A1
∗)2, or Vd,e with e > 1. Then any connected algebraic

group G acting effectively on X is solvable.

Proof. Indeed, by Proposition 2.24, G is conjugated to a subgroup of one of the
factors A○ and B○, which are both solvable in these cases. �

4. Algebraic group actions on affine surfaces

4.1. Generalities. In this section we recall some general facts about algebraic
group actions on affine varieties and their specialization to the case of affine sur-
faces. By a G-variety we mean a variety with an effective (regular) action of an
(algebraic) group G. The next proposition is well known (see, e.g., [98, 99] and [37,
Lem. 2.7 and 2.9]); for the reader’s convenience we provide either a short argument,
or a reference.

Proposition 4.1. Let G be a connected affine algebraic group, and let X be a normal
affine G-variety. Then the following hold.

(a) We have rkG ≤ dimX, and rkG = dimX if and only if X is toric.
(b) If G is solvable and acts transitively on X, then X ≅ Ak × (A1

∗)l for some
k, l ≥ 0.

(c) If G is solvable and acts on X with an open orbit O, then either O = X, or
X ∖O is a divisor.

(d) If G is unipotent and has an open orbit in X, then X ≅ An.
(e) If G is reductive and acts with an open orbit, then it has a unique closed

orbit, and this orbit lies in the closure of any other orbit.
(f) If G is semisimple, then G has no one-dimensional orbit in X.

Proof. (a) Let T ⊂ G be a maximal torus. By the rigidity of algebraic subtori,
algebraic subgroups of T form a countable set. Since T acts effectively on X , the
isotropy subgroup of T at a generic point of X is trivial due to the aforementioned
rigidity. Hence rkG = dimT ≤ dimX . The second assertion in (a) follows by
definition of a toric variety.
For (b) see [99, Thm. 2].
(c) follows from (b) since the open orbit is affine in this case.
(d) Let O be the open orbit of U . Since any orbit of a unipotent group acting

on an affine variety is closed, O = X . Now the result follows from the corollary of
Theorem 2 in loc.cit.

13Cf. Proposition 4.10.
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(e) is proven in [98, Prop. 2].
(f) Since G is semisimple, it admits no non-trivial homomorphism to Aff(A1).

Indeed, otherwise, it would act non-trivially on P1 with a fixed point. Such an
action can be lifted to a non-trivial linear representation of the universal covering
group G̃ in GL(2,K) with a trivial one-dimensional subrepresentation, which is
impossible.
It follows that G cannot act non-trivially on a curve. Now (f) follows. �

Remark 4.2. Note that the proof of (a) works equally for any quasi-projective
variety with an effective action of G.

Corollary 4.3. Let X be a normal affine G-surface. Then the following hold.

(g) If G is non-Abelian and unipotent, then X ≅ A2.
(h) If G semisimple, then it has an open orbit in X with a finite complement.

Proof. (g) If G acts with an open orbit on X , then the result follows from Proposi-
tion 4.1(d). Otherwise, G acts with one-dimensional general orbits, and so, any one-
parameter subgroup H ⊂ G has the same algebra of invariants: O(X)H = O(X)G.
This algebra is affine and its spectrum Z is a smooth affine curve (see [34, Lem. 1.1]).
Any fiber of the induced A1-fibration π∶X → Z is stable under the G-action.
If H ′ is another one-parameter subgroup of G, then the actions of H and H ′

commute. Hence these subgroups commute, and so, G is Abelian, contrary to our
assumption.
Finally, (h) is immediate from (f). �

Remark 4.4. The affine plane is exceptional with respect to the property in (g).
Indeed, the Heisenberg group

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
1 a b

0 1 c

0 0 1

⎞⎟⎠ , a, b, c ∈ K

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a non-Abelian unipotent group acting effectively on A2 via (x, y)↦ (x+ay+b, y+c).
Let us also mention the following results.

Proposition 4.5 ([38, Thm. 3.3, Cor. 3.4]). Suppose that a normal affine surface
X /≅ A1

∗×A1
∗ admits two effective Gm-actions with distinct orbits, that is, with infini-

tesimal generators δ, δ̃, where δ ≠ ±δ̃. Then X admits as well a nontrivial Ga-action.
Furthermore, if X is not toric, then any two effective Gm-actions on X, after pos-
sibly switching one of them by the automorphism λ ↦ λ−1 of Gm, are conjugate via
an automorphism provided by a Ga-action on X.

Remark 4.6. See also [4, Thm. 1] for a generalization to higher dimensions.

Proposition 4.7. If the neutral component Aut○X of an affine algebraic variety X
with dimX ≥ 2 is an algebraic group, then Aut○X ≅ (Gm)r is an algebraic torus.
This is the case, in particular, for surfaces of class (ML2).
Proof. The first assertion follows easily by a lemma of Iitaka [59, Lem. 3], see, e.g.,
[74, Thm. 1.3] and [83, Thm. 4.10(a)]. The second will be proven in a forthcoming
paper [96]. Let us indicate an independent approach in the particular case of surfaces
X ∈ (ML2) of positive rank r = rkAutX ≥ 1.
If r = 2, then X is a toric surface. However, by [82] the only affine toric surface

of class (ML2) is the 2-torus X = (A1
∗)2 with Aut○X = (Gm)2.

Due to Proposition 4.5, for a surface X of class (ML2), the group AutX contains
a unique algebraic torus T. Hence, T ⊂ G = Aut○X is a normal subgroup. Suppose
further that r = 1, that is, T ≅ Gm, and so, X is a Gm-surface. Consider the set F
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consisting of the fixed points of T and of a finite union of all those one-dimensional
orbits of T, which make obstacle to existence of a geometric T-quotient. Since G
normalizes T, F is G-stable. Its complement U =X ∖F admits a geometric quotient
C = U/T, where C is an algebraic curve. This yields a homomorphism G→ Aut○C.
Its kernel H ⊃ T stabilizes general T-orbits. For such an orbit O ≅ A1

∗ one has
T∣O = Aut○O ≅ Gm. Since Aut○O ⊃ H ∣O ⊃ T∣O, we have H ∣O = T∣O. It follows that
H = T. Hence G is an extension of T by a connected subgroup of the algebraic group
Aut○C, that is, G is an algebraic group of dimension ≤ 2. By the first part of the
proposition, Aut○X = G = T ≅ Gm. �

4.2. Quasihomogeneous affine surfaces.

Theorem 4.8 (Gizatullin–Popov, [53], [99]). A normal affine surface X admitting
an action of an algebraic group with an open orbit whose complement is finite, is
one of the surfaces

(6) A2, A1 ×A1
∗, (A1

∗)2, Vd, d ≥ 2, P2 ∖C, and (P1 × P1) ∖∆ ,

where Vd = Vd,1 is a Veronese cone (see 3.1), C is a smooth conic in P2, and ∆ is
the diagonal in P1 × P1.

Using Proposition 4.1(f) we deduce the following corollary.

Corollary 4.9. Let X be a normal affine surface. Then the following conditions
are equivalent:

(i) X admits a nontrivial action of a connected semisimple group;
(ii) X is spherical, that is, it admits a semisimple group action, such that a Borel

subgroup has an open orbit;
(iii) X is one of the surfaces

(7) A2, Vd, d ≥ 2, P2 ∖C, (P1 × P1) ∖∆.
The following proposition is a version of Proposition 4.14 in [37]. We provide a

new proof.

Proposition 4.10. Suppose that the ground field K is uncountable. Let X be a
normal affine G-surface, where G ⊂ AutX is a connected reductive algebraic group
different from a torus. Then the pair (X,G) is one of the following:

● (A2,GL(2,K)) and (A2,SL(2,K));
● (Vd,GL(2,K)/µd), d ≥ 2, (Vd,SL(2,K)), d ≥ 3 odd, and (Vd,PSL(2,K)),
d ≥ 2 even;
● (P2 ∖C,PSL(2,K)) and ((P1 × P1) ∖∆,PSL(2,K)).

Furthermore, the action of G on X is unique up to a conjugation in the group AutX.

Proof. Under our assumptions G contains a nontrivial semisimple subgroup. Hence
G acts with an open orbit, which has a finite complement in X , see Corollary 4.3(h).
By Gizatullin-Popov Theorem 4.8 X is one of the list (7). Due to the results cited
in Section 3, the group AutX is an amalgam of two closed nested ind-groups. By
Proposition 2.24, G is conjugated to a subgroup of the non-solvable factor in the
amalgam decomposition of AutX .
If X is one of the surfaces P2 ∖ C and (P1 × P1) ∖∆, then by 3.7 and 3.8, G =

PSL(2,K), and the G-action on X is unique up to conjugation; see also [98], [26],
and [37, Prop. 4.14] for alternative proofs.
Similarly, for X = A2 the assertion follows from 3.3. If X = Vd, d ≥ 2, then by

3.4, case (i), G is conjugated in AutX to a subgroup of the non-solvable factor
GL(2,K)/µd,1, where µd,1 ≅ Z/dZ is contained in the center of GL(2,K). Hence G is
conjugated either to GL(2,K)/µd,1 itself, or to SL(2,K), or to PSL(2,K) canonically
embedded in GL(2,K)/µd,1, depending on the parity of d. �
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4.3. Actions with an open orbit. Recall that an effective Gm-action on a normal
affine variety defines a grading A =⊕j∈ZAj on the algebra A = O(X). For dimX = 2
the Gm-action is called elliptic if Aj = 0 ∀j < 0 and A0 = K, parabolic if Aj = 0 ∀j < 0
and A0 ≠ K, and hyperbolic if A−1 ≠ 0 ≠ A1.
The following result is essentially Proposition 2.10 in [37]; cf. also [11, Prop. 2.5]14.

For the reader’s convenience, we sketch a proof.

Proposition 4.11. Let X be a normal affine surface different from the surfaces in
(2). Then the following are equivalent:

(i) X admits an effective action of a connected affine algebraic group G with an
open orbit;

(ii) X admits an action of a semi-direct product Ga ⋊Gm with an open orbit;
(iii) X admits effective Ga- and Gm-actions such that O(X)Gm ≠ O(X)Ga.

Moreover, any Gm-action on X as in (iii) is hyperbolic, X is of class (ML0∪ML1,1),
andX is a cyclic quotient of a normalization of a Danielewski surface {xy−P (z) = 0}
in A3 for some P ∈ K[z].
Proof. (i)⇔(ii). As follows from Proposition 4.10 and Theorem 4.8, under our as-
sumption the group G as in (i) does not contain any semisimple subgroup, and so,
is solvable. Since by assumption X is non-toric, rkG ≤ 1. In fact, rkG = 1. Indeed,
otherwise G is unipotent and acts with an open orbit. Since the orbits of a unipotent
group acting on an affine variety are closed, G is transitive in X . By Proposition
4.1(b), X ≅ A2, which is excluded by our assumption.
The open orbit O of G in X coincides with an open orbit (isomorphic to one of

A2, A1 × A1
∗, (A1

∗)2) of a two-dimensional subgroup H ≅ Ga ⋊ Gm of G ([37, Lem.
2.9(b)]). This gives (i)⇒(ii). The implication (ii)⇒(i) is immediate, hence we have
(i)⇔(ii).
(ii)⇒(iii). By (ii) X is a Gm-surface admitting a horizontal Ga-action. The latter

means that the general Ga-orbits are not the closures of general Gm-orbits, which
implies (iii).
(iii)⇒(ii). We claim that any affine variety with effective Ga- and Gm-actions as

in (iii) possesses an effective action of a semi-direct product Ga ⋊Gm. Indeed, let
A = ⊕i∈ZAi be the grading of the algebra A = O(X) induced by the Gm-action,
and let ∂ ∈ DerA be the locally nilpotent derivation corresponding to the Ga-action.
Write ∂ = ∑li=k ∂i, where k ≤ l and ∂i ∈ DerA is a homogeneous derivation of degree i
with ∂k ≠ 0 ≠ ∂l. Then ∂k, ∂l are again locally nilpotent ([37, Lem. 2.1], [101]). Then
the Ga-actions on X generated by ∂k and ∂l are normalized by the Gm-action. This
yields the existence of an (Ga ⋊Gm)-action on X ; see [37, Lem. 2.2]. Notice that, if
k = l, then ∂ = ∂k = ∂l, and the induced Ga-action is horizontal due to our assumption
that O(X)Gm ≠ O(X)Ga . Otherwise, at least one of the indices k and l is different
from −1, and again the induced Ga-action is horizontal, since otherwise the degree
of the corresponding locally nilpotent derivation equals −1, see [37, Thm. 3.12]. In
any case, the associate (Ga ⋊Gm)-action on X has an open orbit, as required in (ii).
Finally we have the equivalences (i)⇔(ii)⇔(iii).
To show the last assertions, note that under condition (iii) the horizontal Ga-

action on X is normalized by the given Gm-action. If the latter action were elliptic
or parabolic, then X would be a toric surface A2 or Vd,e, contrary to our assumption,
see [37, Thms. 3.3 and 3.16]. Hence the Gm-action on X is hyperbolic, as claimed.
By exclusion X belongs to one of the classes (MLi,1), i = 0,1. Furthermore, due

to [37, Cor. 3.27 and 3.30], any hyperbolic Gm-surface X ∈ (ML0)∪(ML1) is a cyclic

14In [11, Prop. 2.5] the condition O(X)Gm ≠ O(X)Ga is lacking; furthermore, the proof in [11]
assumes implicitly smoothness of X .

20



quotient of the normalization of some Danielewski surface xny − P (z) = 0 in A3,
where P ∈ K[z] and n ≥ 1. �

Remark 4.12. If a surface X ∈ (ML0) is a complete intersection, then it can be
realized as a hypersurface xy − P (z) = 0 in A3, where P ∈ K[z] is nonconstant, see
[7], [22], [23]. In particular, X is a hyperbolic Gm-surface.

4.4. Gm-surfaces: Dolgachev-Pinkham-Demazure presentation. The Gm-
surfaces can be described in terms of their Dolgachev-Pinkham-Demazure presenta-
tion, or DPD presentation, for short. Let us recall this description, see [36].

Definition 4.13. In the elliptic and the parabolic cases, the DPD construction
associates to any pair (C,D), where C is a smooth curve and D is an ample Q-
divisor on C, the graded K-algebra

A =⊕
j≥0

Aj, where Aj =H
0(C,OC(⌊jD⌋)) .

The induced effective Gm-action on the normal affine surface X = SpecA is elliptic
if C is projective and parabolic otherwise. In the hyperbolic case, the DPD con-
struction associates to any triple (C,D+,D−), where C is a smooth affine curve and
D± are Q-divisors on C with D+ +D− ≤ 0, the graded K-algebra

A =⊕
j∈Z

Aj , where A±j =H
0(C,OC(⌊jD±⌋)) for j ≥ 0.

The resulting effective Gm-action on X = SpecA is hyperbolic. In fact, any normal
affine Gm-surface X arises in this way, and the corresponding DPD presentation
is unique up to isomorphisms of pairs (C,D) and of triples (C,D+,D−) and up to

replacing D (the pair (D+,D−), respectively) by a linearly equivalent divisor D̂ (by
a pair (D+ +D′,D− −D′), where D′ is a principal divisor on C, respectively), see
[36, Thms. 2.2, 3.2, and 4.3].

The classification of the normal affine Gm-surfaces according to the Makar-
Limanov complexity is as follows, see [37] and [82, Cor. 3.30]. We let {D} be
the fractional part of a Q-divisor D.

Proposition 4.14. Let X be a normal affine Gm-surface with an associate DPD
presentation (C,D) for an elliptic or a parabolic Gm-action, and (C,D+,D−) for a
hyperbolic one. Then

● X ∈ (ML0) if and only if one of the following holds:
– X is elliptic, C = P1, and {D} is supported in at most two points;
– X is parabolic, C = A1, and {D} is supported in at most one point;
– X is hyperbolic, C = A1, and {D±} is supported in at most one point p±.

● X ∈ (ML1) if and only if one of the following holds:
– X is parabolic, and either C is non-rational, or {D} is supported in at
least two points;

– X is hyperbolic, C = A1, and exactly one of the Q-divisors {D+}, {D−}
is supported in at most one point.

● X ∈ (ML2) otherwise.
Remarks 4.15. 1. The elliptic and the parabolic Gm-surfaces of class (ML0) are
exactly the nondegenerate toric surfaces15 A2 and Vd,e, see [37, Thms. 3.3 and 3.16].
A hyperbolic Gm-surface X of class (ML0) is a nondegenerate toric surface if and
only if supp{D+} = supp{D−} = {p0} for some point p0 ∈ C = A1, and (D+,D−) =(D0 + {D+}, −D0 + {D−}) for some integral divisor D0 on A1 ([41, Lem. 4.2(b)]).

15Recall that a toric affine variety X is nondegenerate if any invertible function on X is constant.
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2. There exist smooth surfaces of class (ML0,0), that is, smooth Gizatullin sur-
faces which do not admit any nontrivial Gm-action, see [41, Cor. 4.9]. The subgroup
SAutX ⊂ AutX of such a surface acts on X with an open orbit, while there is no
algebraic group action on X with an open orbit.
3. If X ∈ (ML1) is a parabolic Gm-surface, then the Ga-action on X is vertical

(or fiberwise), that is, O(X)Gm = O(X)Ga. This follows from [37, Thm. 3.16], cf.
Remark 1 above.
4. If X ∈ (ML2) is a Gm-surface, then Aut○X ≅ Gm or G2

m, see Proposition 4.7.

In terms of the DPD presentation, the criterion of Proposition 4.11 becomes more
concrete.

Corollary 4.16. Let X be a normal affine surface. The group AutX acts on X

with an open orbit if and only if either X is one of the surfaces in (2), or X is of
class (ML0), or, finally, X is a hyperbolic Gm-surface of class (ML1).
Proof. Suppose that X does not appear in (2). By Proposition 4.11 the group AutX
acts on X with an open orbit if and only if a semi-direct product Ga ⋊Gm does, and
so, X is a Gm-surface of class (ML0)∪ (ML1). It remains to note that the (AutX)-
action on a parabolic Gm-surface of class (ML1) has one-dimensional orbits, see
Remark 4.15.2. �

5. Automorphism groups of Gizatullin surfaces

5.1. Definition, characterizations, examples. We adopt the following defini-
tion.

Definition 5.1. A Gizatullin surface is a normal affine surface X non-isomorphic
to A1 × A1

∗ that can be completed by a chain of smooth rational curves (a zigzag)
into an SNC-pair (X̄,D).
The following characterization goes back to Gizatullin [54]; see also [11, Thm.

1.8], [30].

Theorem 5.2. Given a normal affine surface X, the following are equivalent:

● X is a Gizatullin surface;
● X is of class (ML0);
● X admits two distinct A1-fibrations X → A1;
● the group SAutX acts on X with an open orbit.

The affine plane A2 and the toric affine surfaces A2/µd,e are examples of Gizatullin
surfaces. Another important examples are the Danilov-Gizatullin surfaces and the
special Gizatullin surfaces. Let us consider these classes along with their DPD
presentations.

Example 5.3 (Danilov-Gizatullin surfaces). Such a surface is the complement X =
Fn ∖ S to an ample section S in a Hirzebruch surface Fn = P(OP1 ⊕OP1(n)) → P1.
A section S is ample if and only if d ∶= S2 > n. Two Danilov-Gizatullin surfaces are
isomorphic if and only if they share the same invariant d = S2, see [26, Thm. 5.8.1]
(see also [17, Cor. 4.8], [44]). We let Xd denote the Danilov-Gizatullin surface with
invariant d = S2. The surface Xd possesses exactly d − 1 pairwise non-conjugated
Gm-actions with the DPD presentations

(C,D+,D−) = (A1,−
1

r
[p0], − 1

d − r
[p1]) , r = 1, . . . , d − 1 ,

where p0, p1 ∈ A1, p0 ≠ p1. see [37, 5.3] and [41, Prop. 5.15]. The automorphism
group of a Danilov-Gizatullin surface Xd with 2 ≤ d ≤ 5 is an amalgam, see [26,
§§5-8].
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Example 5.4 (Special Gizatullin surfaces). A smooth Gizatullin surfaceX equipped
with a hyperbolic Gm-action is called special if the associate DPD presentation is

(C,D+,D−) = (A1, −
1

r
[p+] ,− 1

d − r
[p−] −D0)

with d ≥ 3, 1 ≤ r ≤ d − 1, under the convention that D+ = 0 if r = 1 and D− = 0 if
r = d − 1, and otherwise p+ ≠ p−, and with a reduced divisor D0 = ∑si=1[pi] on A1,
where s > 0 and pi ≠ p± ∀i.

5.2. One-parameter subgroups and bearability on Gizatullin surfaces. For
Gizatullin surfaces the following theorem is proven in [43, Thms. 1.0.1, 1.0.5, and
Ex. 6.3.21], see also [41, §5.3] and [42, Cor. 5.15].

Theorem 5.5. Smooth affine surfaces X admitting an effective Gm-action can be
divided into the following 4 classes:

1) toric affine surfaces;
2) Danilov-Gizatullin surfaces Xd, d ≥ 4;
3) special Gizatullin surfaces;
4) all the others,

so that the set of conjugacy classes of 1-tori in AutX

● is infinite countable in case 1)16;
● is finite of cardinality ⌊d/2⌋ for Xd in case 2);
● forms a 1- or 2-parameter family in case 3);
● is finite of cardinality at most 2 in case 4).

Furthermore, the set of equivalence classes of A1-fibrations X → A1

● is finite of cardinality at most 2 in cases 1) and 4);
● forms an m-parameter family in case 2), where m ≥ 1 if d ≥ 7, and m =
m(d)→ +∞ as d→ +∞;
● forms an m-parameter family in case 3), where m ≥ 1.

Proof. For surfaces of class ML0, that is, for Gizatullin surfaces, the assertions follow
due to the references preceding the theorem. Thus we need to consider just the ML1-
and ML2-surfaces. By definition, such a surface X admits at most one A1-fibration
over an affine curve. By Corollary 6.11 the group Aut○X is nested, that is, 1-
bearable, and has at most one conjugacy class of maximal tori. Hence the assertions
follow also in this case. �

Corollary 5.6. Suppose that the base field K is uncountable. If X is either a
special Gizatullin surface, or a Danilov-Gizatullin surface Xd with d ≥ 7, then the
group Aut○X is not countably bearable. Furthermore, AutXd (Aut

○Xd, respectively)
is not a nested ind-group for d = 4,5, and cannot be a nontrivial amalgam of two
nested ind-groups for d = 6.

Proof. By Theorem 5.5, for a special Gizatullin surface X (for a Danilov-Gizatullin
surface Xd with d ≥ 7, respectively) the set of conjugacy classes of Gm-subgroups
(of A1-fibrations over A1, respectively) in Aut○X is uncountable. In these cases the
assertion follows from Propositions 2.29 and 2.32, respectively. For d ≤ 6, the groups
AutXd and Aut○Xd have both ⌊d/2⌋ conjugacy classes of Gm-subgroups, that is, of
maximal tori. Indeed, rkAutXd = 1, since this surface is not toric. Hence for d ≤ 6
the assertion follows from Remark 2.30. �

Remarks 5.7. 1. The presentation of the group AutXd as an amalgam in [26, §§6-
8] involves two factors if d = 3 and three factors if d = 4,5. It seems that for d = 6,
no explicit amalgam structure on AutXd is known. The authors of [26] mention

16The latter holds for any toric affine surface X , not necessarily smooth.
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that their methods allow in principle to compute the group AutXd for any d; cf.,
however, Corollary 5.6.
2. See [13] and [71] for spectacular examples of Gizatullin surfaces X such that,

if N(X) ⊂ AutX is the normal subgroup generated by all algebraic subgroups of
AutX , then the quotient (AutX)/N(X) contains a free group on an uncountable
set of generators.

5.3. Standard completions and extended divisors of Gizatullin surfaces.

These combinatorial invariants are indispensable in studies on Gizatullin surfaces.

Notation 5.8. Let X be a Gizatullin surface, and let (X̄,D) be an SNC completion
of the minimal resolution of singularities of X 17 by a zigzag D, where

D = C0 +⋯ +Cn with Ci ⋅Cj = 1 if ∣i − j∣ = 1 and Ci ⋅Cj = 0 otherwise .

The boundary components Ci, 0 ≤ i ≤ n, serve as the vertices vi of the dual linear
graph ΓD of D. Each vertex vi is weighted by the corresponding self-intersection
number wi = C2

i . Thus ΓD is of the form

ΓD ∶ ❝

v0

w0

❝

v1

w1

⋯ ❝

vn

wn

.

The string of weights [[w0,w1, . . . ,wn]] can be putted into a standard form by means
of elementary transformations of weighted graphs.

Definition 5.9. Given an at most linear vertex v of a weighted graph Γ with weight
0 one can perform the following transformations. If v is linear with neighbors v1, v2
then we blow up the edge connecting v and v1 in Γ and blow down the proper
transform of v:

(8) . . . ❝

v1

w1 − 1
❝

v′

0

❝

v2

w2 + 1
. . . ⇢ . . . ❝

v1

w1 − 1
❝

v′

−1
❝

v

−1
❝

v2

w2

. . . → . . . ❝

v1

w1

❝

v

0

❝

v2

w2

.

Similarly, if v is an end vertex of Γ connected to the vertex v1 then one proceeds as
follows:

(9) . . . ❝

v1

w1 − 1
❝

v′

0

⇢ . . . ❝

v1

w1 − 1
❝

v′

−1
❝

v

−1
→ . . . ❝

v1

w1

❝

v

0

.

These operations (8) and (9) and their inverses are called elementary transformations
of Γ. If such an elementary transformation involves only an inner blowup then we
call it inner. Thus (8) and (9) are inner whereas the inverse of (9) is not as it
involves an outer blowup.

Consider a Gizatullin surface X along with a resolved SNC completion (X̄,D),
where X̄ is a smooth projective surface and D ⊂ X̄ is a zigzag. By a sequence of
blowups and blowdowns one can transform the dual graph ΓD into a standard form,
where C2

0 = C
2
1 = 0 and C2

i ≤ −2 for all i ≥ 2 if n ≥ 4 or C2
i = 0 for all i if n ≤ 3 (cf.

[21], [25], [40]). Moreover, this representation is unique up to reversion. The latter
means that for two standard forms [[0,0,w2, . . . ,wn]] and [[0,0,w′2, . . . ,w′n]] of ΓD,
either wi = w′i or wi = w

′
n+2−i holds ([45]).

The reversion process can be described as follows. Start with a boundary divisor of
type [[0,0,w2, . . . ,wn]]. Performing the elementary transformation (8) at the vertex

17Also called a resolved completion.
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corresponding to C1 one gets a boundary divisor of type [[−1,0,w2 +1,w3, . . . ,wn]].
After ∣w2∣ steps one arrives at a boundary divisor of type [[w2,0,0,w3, . . . ,wn]].
Thus, one can move pairs of zeros to the right. Repeating this, one obtains finally
a boundary divisor of type

[[w2, . . . ,wn,0,0]] = [[0,0,wn, . . . ,w2]] .
Notice that all the birational transformations involved are centered at the boundary
(so to say, they yield the identity on the affine parts).
Let us recall the notion of an m-standard zigzag (see [25, (1.2)]).

Definition 5.10. A zigzag D of type [[0,−m,w2, . . . ,wn]] with n ≥ 1 and wi ≤ −2
is called m-standard (in the case n = 1 there is no weight wi).
Anm-standard pair is a pair (X̄,D) consisting of a smooth projective surface X̄ and
an m-standard zigzag D on X̄ . If m = 0, then (X̄,D) is called a standard pair. A
birational map ϕ ∶ (X̄,D)⇢ (X̄ ′,D′) between m-standard pairs is a birational map

ϕ ∶ X̄ ⇢ X̄ ′ which restricts to an isomorphism ϕ∣X̄/D ∶ X̄/D ∼
→ X̄ ′/D′. A reversion of

an m-standard pair starts by reducing it to a 0-standard one by means of m (non-
inner) elementary transformations at the component of zero weight. After reversion
of the resulting 0-standard pair, one returns again at an m-standard pair by per-
forming m elementary transformations at an extremal 0-component. This requires
outer blowups centered at an arbitrary point of a 0-component (cf. Remark 5.20).

Examples 5.11. 1. The Danilov-Gizatullin surface Xd (see 5.3) has a boundary
zigzag of type [[d]] with the standard form [[0,0, (−2)d−1]] (the index d − 1 means
that there are d − 1 consecutive components with self-intersection index −2). Any
smooth affine surface X completable by a standard zigzag [[0,0, (−2)d−1]], d ≥ 2 ,
and non-isomorphic to P2 ∖ C, where C is a smooth conic, is isomorphic to the
Danilov-Gizatullin surface Xd.
2. For a special Gizatullin surface (see 5.4) the standard zigzag is

[[0,0,−2, . . . ,−2,−ws,−2, . . . ,−2]], where ws < −2 .

However, a Gizatullin surface with such a sequence of weights does not need to be
special.

Definition 5.12 (extended divisor). Since the underlying smooth projective surface
X̄ of a 0-standard pair is rational and C2

0 = C
2
1 = 0, it is equipped with rational

fibrations Φi = Φ∣Ci ∣ ∶ X̄ → P1 defined by the complete linear systems ∣Ci∣ on X̄ ,
i = 0,1, respectively. This defines a birational morphism ([41, Lem. 2.19])

Φ = Φ0 ×Φ1 ∶ X̄ → P1 × P1 .

After a suitable coordinate change one may suppose that C0 = Φ−10 (∞), Φ(C1) =
P1 × {∞}, and C2 ∪ ⋯ ∪ Cn ⊆ Φ−10 (0). 18 The reduced effective divisor Dext ∶=
C0 ∪C1 ∪Φ−10 (0) is called the extended divisor.

In order to determine the structure of the extended divisor, let us recall the notion
of a feather ([41, Def. 5.5]).

Definition 5.13 (feathers). (1) A feather is a linear chain

F ∶ ❝

B
❝

F1
. . . ❝

Fs

of smooth rational curves such that B2 ≤ −1 and F 2
i ≤ −2 for all i ≥ 1. The

curve B is called the bridge curve.

18For a map φ∶A→ B, the notation φ−1(b) usually stands for the set theoretical preimage.
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(2) A collection of feathers {Fρ} consists of pairwise disjoint feathers Fρ, ρ =
1, . . . , r. Such a collection will be denoted by a plus box

{Fρ}
.

(3) Let D = C0 +⋯+Cn be a zigzag. A collection {Fρ} is attached to a curve Ci
if the bridge curves Bρ of the feathers Fρ meet Ci in pairwise distinct points
and the feathers Fρ are disjoint with the curves Cj for j ≠ i.

Lemma 5.14. ([42, Prop. 1.11]) Let (X̃,D) be a minimal SNC completion of the
minimal resolution of singularities of a Gizatullin surface X. Furthermore, let D =
C0 + ⋯ + Cn be the boundary divisor in standard form. Then the extended divisor
Dext has the dual graph

(10) Γext ∶ ❝

0

C0

❝

0

C1

❝

C2

{F2,j}
. . . ❝

Ci

{Fi,j}
. . . ❝

Cn

{Fn,j}
,

where {Fi,j}, j ∈ {1, . . . , ri}, are feathers attached to the curve Ci. Moreover, X̃ is
obtained from P1 × P1 by a sequence of blowups with centers in the images of the
components Ci, i ≥ 2.

Remark 5.15. Consider the feathers Fi,j ∶= Bi,j + Fi,j,1 + ⋯ + Fi,j,ki,j mentioned in
Lemma 5.14. The collection of linear chains Ri,j ∶= Fi,j,1 +⋯+Fi,j,ki,j corresponds to
the minimal resolution of singularities ofX . Thus, if (X̄,D) is a standard completion
of X and (X̃,D) is the minimal resolution of singularities of (X̄,D), then the chain
Ri,j contracts via µ ∶ (X̃,D) → (X̄,D) to a singular point of X , which is a cyclic
quotient singularity. In partcular, X has at most cyclic quotient singularities ([90,
§3, Lem. 1.4.4(1)] and [42, Rem. 1.12]).
Hence X is smooth if and only if every Ri,j is empty, i. e. , if every feather Fi,j is

irreducible and reduces to a single bridge curve Bi,j ([42, 1.8, 1.9 and Rem. 1.12]).

Let us introduce the notions of a ∗-component and a +-component.

Definition 5.16. (1) For a general feather F with dual graph

ΓF ∶ ❝

B

❝

D1

. . . ❝

Dk

and bridge curve B we call Dk the tip component of F .
(2) The component Ci is called a ∗-component if

(i) D≥i+1ext is not contractible and
(ii) D≥i+1ext −Fj,k is not contractible for every feather Fj,k ofD

≥i+1
ext such that the

tip component of Fj,k has mother component Cτ , that is, the component
Cτ with τ < i carrying the center of blowup in which the tip component
of Fj,k is born.

Otherwise Ci is called a +-component.

Lemma 5.17. Let Dext be the extended divisor of the minimal resolution of singu-
larities of a 1-standard completion of a Gizatullin surface X. Suppose that every Ci,
3 ≤ i ≤ n−1, is a ∗-component and that there is no feather attached to the component
Cn. Then every feather Fi,j is an Ak-feather, that is, every Fi,j is contractible and
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therefore has the dual graph

ΓFi,j
∶ ❝

−1

B

❝

−2

D1

. . . ❝

−2

Dk

,

with k depending on i and j.

Note that for an Ak-feather the mother components of all curves D1, . . . ,Dk coin-
cide, since any Ak-feather is born by successive blowups of a point on the boundary
component it is attached to.

Examples 5.18. 1. A Gizatullin surface X is isomorphic to a nondegenerate toric
surface Vd,e = A2/µd,e if and only if for some (and then also for any) resolved standard

completion (X̃,D) of X the dual graph Γext of the associated extended divisor Dext

is a linear chain ([41, Lem. 2.20]).
2. Given a Danilov-Gizatullin surface Xd with d ≠ 4, there are only d − 1 possible

associated extended divisors (which do not depend, up to an isomorphism, on any
further continuous parameter), with the dual graphs

Γext ∶ ❝

C0

❝

C1

❝

C2

❝

C3

. . . ❝

Cr−1

❝

Cr

❝

1 − r

❝

Cr+1

. . . ❝

Cd−2

❝

Cd−1

❝

−1

,

where 2 ≤ r ≤ d−1. In addition, for d = 4, there is another extended divisor possible;
the corresponding affine surface is called an affine pseudo-plane. Its dual graph is

Γext ∶ ❝

C0

❝

C1

❝

C2

❝

C3

❝

−1

❝

C4

.

5.4. Associated graph of groups. Following [25] and [12], for an A1-fibered sur-
face X we introduce a (not necessarily finite) graph FX , which reflects the structure
of the group AutX .

Definition 5.19. To any A1-fibered smooth affine surface µ∶X → A1 one associates
the oriented graph FX as follows:

● A vertex of FX is an equivalence class of a 1-standard pair (X̄,D) such that
X̄/D ≅ X , where two 1-standard pairs (X̄1,D1, µ̄1) and (X̄2,D2, µ̄2) define
the same vertex if and only if (X̄1/D1, µ1) ≅ (X̄2/D2, µ2).
● An arrow of FX is an equivalence class of reversions. If ϕ ∶ (X̄,D)→ (X̄ ′,D′)
is a reversion, then the class [ϕ] of ϕ is an arrow starting from [(X̄,D)]
and ending at [(X̄ ′,D′)]. Two reversions ϕ1 ∶ (X̄1,D1) ⇢ (X̄ ′1,D′1) and
ϕ2 ∶ (X̄2,D2)⇢ (X̄ ′2,D′2) define the same arrow if and only if there exist iso-
morphisms θ ∶ (X̄1,D1) → (X̄2,D2) and θ′ ∶ (X̄ ′1,D′1) → (X̄ ′2,D′2), such that
ϕ2 ○ θ = θ′ ○ϕ1. Given an arrow α, we denote by s(α) and t(α), respectively,
the starting and ending vertices of α.

Remark 5.20. It follows from the definition that for a 1-standard pair (X̄,D)
two reversions ϕ1 ∶ (X̄,D) ⇢ (X̄1,D1) and ϕ2 ∶ (X̄,D) ⇢ (X̄2,D2) centered at the
points p1 and p2 define the same arrow if and only if there exists an automorphism
ψ ∈ Aut(X̄,D) such that ψ(p1) = p2, see Definition 5.10.

The structure of the graph FX allows to decide, whether the automorphism group
AutX is generated by automorphisms of A1-fibrations. One says that ϕ ∈ AutX
is an automorphism of A1-fibrations if there exists an A1-fibration µ ∶ X → A1 such
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that ϕ induces an isomorphism ϕ ∶ (X,µ) ≅
Ð→ (X,µ). Indeed, we have the following

important fact.

Theorem 5.21. ([12, Prop. 4.0.7]) Suppose that D has a component Ci with C2
i ≤ −3.

Then AutX is generated by automorphisms of A1-fibrations if and only if FX is a
tree. Furthermore, there is an exact sequence

1Ð→H Ð→ AutX Ð→ π1(FX)Ð→ 1 ,

where H is the normal subgroup of AutX generated by the automorphisms of A1-
fibrations and π1(FX) is the fundamental group of the graph FX .

Remark 5.22. Due to Corollary 8.26 below, each of the automorphism groups of
A1-fibrations which generate H is an extension of a metabelian connected nested
ind-group of rank ≤ 2 by an at most countable group. The same concerns the factors
of the amalgams considered in the next subsection.

One can equip FX with a structure of a graph of groups as follows.

Definition 5.23. Let X be a normal quasi-projective surface, and let FX be its
associated graph. Then FX admits a structure (GX ,FX) of a graph of groups by
the following choice:

● For any vertex v of FX , fix a 1-standard pair (X̄v,Dv, µ̄v) in the class v. The
group Gv is equal to Aut(X̄v/Dv, µv).
● For any arrow σ of FX , fix a reversion rσ ∶ (X̄σ,Dσ, µ̄σ)⇢ (X̄ ′σ,D′σ, µ̄′σ) in the
class of σ and also an isomorphism φσ ∶ (X̄ ′σ/D′σ, µ′σ) → (X̄t(σ)/Dt(σ), µt(σ)).
Then the group Gσ is equal to

{(ϕ,ϕ′) ∈ Aut(X̄σ,Dσ) ×Aut(X̄ ′σ,D′σ) ∣ rσ ○ϕ = ϕ′ ○ rσ}
and the monomorphisms κσ ∶ Gσ → Gs(σ) and λσ ∶ Gσ → Gt(σ) are given by
κσ((ϕ,ϕ′)) = φσ−1 ○ ϕ ○ φ−1σ−1 and λσ((ϕ,ϕ′)) = φσ ○ ϕ′ ○ φ−1σ .
● A path in the graph of groups is a sequence (g0, σ1, g1, . . . , σr, gr), where
gi ∈ Gvi and the sequence (v0, σ1, v1, . . . , σr, vr) corresponds to a path in FX .
We say that the path starts at v1 and ends at vn, and is closed if v1 = vn.
● The fundamental group of a graph of groups at a vertex v consists of the
closed paths starting and ending at v, modulo the relations

(σ,λσ(h), σ−1, (κσ(h))−1) ≅ (1) and (g, σ,1, σ−1, g′) ≅ (gg′) ,
where 1 ∈ Gs(σ).

The first version of the following theorem was established by Danilov and Gizat-
ullin ([25, Thm. 5]). It connects the structure of the graph of groups on FX as in
Definition 5.23 with the group AutX .

Theorem 5.24. ([25, Thm. 5], see also [12, Thm. 4.0.11]) Let (X̄,D) be a 1-standard
pair such that D has a component Ci with C2

i ≤ −3. If X = X̄/D, then AutX ≅
π1(GX ,FX).
The following important consequence concerns the structure of the automorphism

groups of Gizatullin surfaces.

Corollary 5.25. Under the assumptions of Theorem 5.24 suppose in addition that
FX is a tree with vertices [(X̄i,Di)], i ∈ I. Then AutX is an amalgam of the
automorphism groups Aut(X̄i/Di, µi) of A1-fibrations over A1.
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5.5. Amalgam structures for Gizatullin surfaces. In this section we list all
the Gizatullin surfaces known to the authors, where the automorphism group is
an amalgam (however, see [31] for further potential examples). The easiest way to
present such surfaces is to describe various 1-standard completions of them in terms
of the dual graphs of their extended divisors.
Although the following theorem is a special case of Theorem 5.27, it is worth to

be mentioned independently.

Theorem 5.26. ([12, Thm. 5.4.5]) Consider a Danielewski surface

X = {xy − P (z) = 0} ⊆ A3, where P (z) ∈ K[z]
has degree n ≥ 1. Then X has a standard completion (X̄,D) of type [[0,0,−n]].
Letting τ ∈ AutX be the involution (x, y, z) ↦ (y, x, z) and µ∶X → A1 be the A1-
fibration (x, y, z) ↦ x, we let A = ⟨Aut(X̄,D), τ⟩ ⊆ AutX and J = Aut(X,µ). Then
A ∩ J = Aut(X̄,D) and

AutX = A ⋆A∩J J .

This result can be generalized as follows.

Theorem 5.27. ([70, Cor. 3.19, cf. Thm. 4.4]) Let X be a smooth Gizatullin surface
satisfying the following condition (see diagram (10)):

(∗) X admits a 1 − standard completion (X̄,D) such that C3, . . . ,Cn−1 are

∗-components and there is no feather attached to C2 and to Cn.

Fix an A1-fibration µ∶X → A1, and let µ∨ ∶ X → A1 be the A1-fibration induced by
the reversion ψ ∶ (X̄,D)⇢ (X̄∨,D∨) with center p ∈ C0/C1. Then FX has one of the
following structures:

FX ∶ [(X̄,D)] ● oo // ● [(X̄∨,D∨)] or FX ∶ [(X̄,D)] ●⟲ .

If FX is of the form ●⟲, then D≥2 is a palindrome.

(a) Let FX be of the form ●⟲, that is, (X̄,D) ≅ (X̄∨,D∨). Then

AutX = A ⋆A∩J J ,

where A = ⟨Aut(X̄,D), ψ⟩, J = Aut(X,µ), and A ∩ J = Aut(X̄,D).
(b) Let FX be of the form [(X̄,D)] ● oo // ● [(X̄∨,D∨)] . Denote by A the sub-

group corresponding to the edge and by J and J∨ the subgroups J = Aut(X,µ)
and J∨ = Aut(X,µ∨). Identifying J ↩ A↪ J∨ we have

AutX = J ⋆A J∨.

An important particular case of Theorem 5.27 is that of the toric affine surfaces
with the amalgam structures on their automorphism groups as exposed in 3.3-3.6.
Another interesting example of a family of smooth Gizatullin surfaces, for which

the automorphism groups are amalgams, is the following one. Consider any smooth
1-standard pair (X̄,D) such that the dual graph of Dext has the following form:

Γext ∶ ❝

C0

❝

C1

❝

C2

❝

C3

. . . ❝

Ci−1

❝

Ci

{Fj}
❝

Ci+1

. . . ❝

Cn−1

❝

Cn

❝

−1

,

where C3, . . . ,Cn−1 are ∗-components. Hence any feather Fj has self-intersection
index F 2

j = −1. Reversion of (X̄,D) may lead to two different completions, namely
those with the dual graphs of the extended divisors
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Γ′ext ∶ ❝

C∨0

❝

C∨1

❝

C∨2

❝

−1

❝

C∨3

. . . ❝

C∨n+1−i

❝

C∨n+2−i

{F ∨j }

❝

C∨n+3−i

. . . ❝

C∨n−1

❝

C∨n

and

Γ′′ext ∶ ❝

C∨0

❝

C∨1

❝

C∨2

❝

C∨3

. . . ❝

C∨n+1−i

❝

C∨n+2−i

{F ∨j }

❝

C∨n+3−i

. . . ❝

C∨n−1

❝

C∨n

❝

−2

,

respectively, depending on the choice of the center of reversion λ ∈ C0/C1. It is not
difficult to see that the action of Aut(X̄,D) on C0/C1 admits two orbits, namely an
open orbit (C0/C1)/{p} and a point {p} (depending on the position of the feather
G attached to Cn). Moreover, the actions of Aut(X̄ ′,D′) and Aut(X̄ ′′,D′′), respec-
tively, on C ′0/C ′1 and C ′′0 /C ′′1 , respectively, are transitive. These observations lead to
the following proposition.

Proposition 5.28. The graph FX associated to X = X̄/D is

FX ∶ [(X̄ ′,D′)] oo σ
′

// [(X̄,D)] oo σ′′ // [(X̄ ′′,D′′)] .
Fixing arbitrary reversions α ∶ (X̄,D) ⇢ (X̄ ′,D′) and β ∶ (X̄,D) ⇢ (X̄ ′′,D′′), it
follows that AutX is an amalgam of the groups Aut(X,µ), Aut(X,µ′ ○ α), and
Aut(X,µ′′ ○ β), amalgamated over their pairwise intersections.

5.29. The last statement requires an explanation. By [12, Thm. 3.0.2], every au-
tomorphism of a Gizatullin surface admits (an essentially unique) decomposition in
fibered modifications and reversions. Let us fix two reversions α ∶ (X̄,D)⇢ (X̄ ′,D′)
and β ∶ (X̄,D) ⇢ (X̄ ′′,D′′) (which are, as we have seen, unique up to equiva-
lence). Then every automorphism of X has an (essentially unique) decomposition
into maps of the form φ ∈ Aut(X,µ), α−1ϕ′α ∈ Aut(X,µ′ ○ α) with ϕ′ ∈ Aut(X,µ′),
and β−1ϕ′′β ∈ Aut(X,µ′′ ○ β) with ϕ′′ ∈ Aut(X,µ′′).
Examples 5.30. 1. Given a Danilov-Gizatullin surface Xd (see Example 5.3), for
d = 2,3,4,5 the group Aut(Xd) is an amalgam of a finite set of nested subgroups,
hence is finitely bearable, see [26], §§6 - 10 for details. Whereas for d ≥ 7 this group
is not countably bearable by Corollary 5.6.
2. An interesting example of a smooth Gizatullin surface X with an amalgam

structure of AutX is given by the following construction, see [12, 5.5]. For a, b ∈ K∗,
c ∈ K, and a ≠ b, consider the smooth Gizatullin surface Xa,b,c in A4 given by the
equations

xz = y(y − a)(y − b),
yw = z(z − c),
xw = (y − a)(y − b)(z − c) .

The (abstract) isomorphism type of Xa,b,c =∶ X does not depend on the parameters
a, b, c, see [12, 5.5.6]. Furthermore, X possesses a 1-standard completion of type[[0,−1,−2,−3]]. It is an easy exercise to show that X admits 4 different families
of 1-standard completions (X̄1,D1), (X̄2,t,D2,t), (X̄3,t,D3,t), and (X̄4,D4), two of
them depending on a parameter t ∈ K/{0,1} (and these are isomorphic if and only
if the parameters t, t′ are equivalent under the relation ∼ generated by t ∼ t−1) and
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the other two are independent on any parameter. It is shown in [12, 5.5.4] that the
associated graph FX has the following structure:

[(X2,s,D2,s)] oo // [(X3,s,D3,s)]

[(X4,D4)] oo // [(X1,D1)]ww
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[(X2,t,D2,t)] oo // [(X3,t,D3,t)]
where (s, t) ∈ (K/{0,1})2 factorized by the equivalence relation s ∼ s−1. The group
AutX is an amalgam of the (uncountable set of) groups of automorphisms of A1-
fibrations, see [12, 5.5.5]. In particular, this group is uncountably bearable.

Let us conclude this section with the following problem.

Problem. Determine, for which Gizatullin surfaces X the neutral component
Aut○X is a (finitely or countably) bearable group.

6. Automorphism groups of A1-fibrations

As we have seen in Section 5, the automorphism groups of A1-fibrations over
affine bases play an essential role in studying the full automorphism group. For an
A1-fibered variety over an affine base of arbitrary dimension, we describe in Subsec-
tion 6.1 the unipotent radical of such a group as a nested ind-group. In Subsection
6.2 we give some immediate applications to the neutral component of the automor-
phism group of a given A1-fibration µ∶X → B on a normal affine surface X over an
affine curve B. Note that any such fibration is generated by some Ga-action on X .
However, the latter does not hold any longer for fibrations over projective bases.
In Sections 7 and 8 we dwell on a description of the full group of automorphisms
Aut(X,µ) in the surface case. For an ML1-surface X , this group coincides with the
full automorphism group AutX .

6.1. Generalized de Jonquières groups.

Definition 6.1. Let X be a normal affine variety, and let µ ∶ X → Z be an A1-
fibration over a normal affine variety Z, that is, a morphism with general scheme
theoretical fibers isomorphic to the affine line. We assume that codimZ(Z∖µ(X)) ≥
2. Consider the subgroups

– Aut(X,µ) ⊂ AutX of all automorphisms of X preserving the fibration µ;
– AutZ(X,µ) ⊂ Aut(X,µ) of those automorphisms which preserve each µ-fiber;
– Uµ ⊂ AutZ(X,µ) of those automorphisms which restrict to translations on
general µ-fibers.

Clearly, Uµ is an Abelian group. This group is infinite dimensional; see, e.g., The-
orem 6.3 below. If X = A2 and µ∶ (x, y) ↦ x, then Uµ is the maximal unipotent
subgroup of the de Jonquières group, see 3.3. In the general case, we call Aut(X,µ)
a generalized de Jonquières group, and Uµ a generalized unipotent de Jonquières
group.

Remarks 6.2. 1. Recall that two A1-fibrations µi ∶ X → Zi on a normal affine
variety X over normal affine varieties Zi, i = 1,2, are said to be equivalent if one can
be sent into another by an automorphism of X which induces an isomorphism of Z1

and Z2. Clearly, µ1 and µ2 are equivalent if and only if the corresponding subgroups
Uµ1 and Uµ2 are conjugated in AutX .
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2. If µ is locally trivial then Uµ is the union of its unipotent one-parameter
subgroups. In fact, for any α ∈ Uµ there is a a locally nilpotent regular vertical
vector field ∂ on X such that α = exp∂, and so, α belongs to the unipotent one-
parameter subgroup H = {exp(t∂)}t∈K ⊂ Uµ. The latter holds as well if X can be
covered by affine charts (Ui)i∈I such that the restriction µ∣Ui

is locally trivial for
each i ∈ I (such charts are automatically α-stable). Moreover, the same conclusion
remains true under a weaker assumption that in each chart Ui of the covering the
A1-fibration µ becomes locally trivial after a cyclic base change. This is the case,
for instance, for any normal A1-fibered affine surface.
3. Let X be a normal affine surface. Then any Ga-action on X acts along the

fibers of an A1-fibration µ ∶ X → Z over a smooth affine curve Z, see, e.g., [34, Lem.
1.1]. Thus, the group SAutX is generated by the unipotent de Jonquières subgroups
Uµ, where µ runs over the set of all the A1-fibrations on X with affine bases. If X
is an ML1-surface, then µ is unique, and so, SAutX = Uµ.

The group Uµ admits the following presentation. We let Frac(A) denote the
quotient field of an integral domain A, and K(Y ) the function field of an algebraic
variety Y over K.

Theorem 6.3. Let µ ∶X → Z be an A1-fibration as in Definition 6.1. Suppose that
Uµ is the union of its unipotent one-parameter subgroups (see Remark 6.2.2). Then

Uµ ≅H
0(Z,OZ(D))

for a divisor D on Z, where the class [D] ∈ PicZ is uniquely defined by µ. If
PicZ = 0, then there exists a locally nilpotent derivation ∂0 ∈ DerOX(X) such that
Uµ = exp ((ker ∂0) ⋅ ∂0).
Proof. Let A = O(X). Shrinking Z appropriately one can obtain an affine ruling,
and even a locally trivial A1-bundleXω → ω on the normal affine varietyXω = µ−1(ω)
over a normal affine base ω, where ω is a principal open subset of Z ([68]; see also
[67]). Shrinking the base further, one may assume thatXω ≅ ω×A1 → ω is a principal
cylinder in X . There exists a Ga-action U = exp(K ⋅ ∂) along the fibers of µ, where
∂ ∈ Der(A) is locally nilpotent and ker ∂ = µ∗(OZ(Z)), see, e.g., [69, Prop. 3.1.5].
If U ′ = exp(K ⋅ ∂′) is a second Ga-action on X along the fibers of µ, then ∂′ = f∂

for some f ∈ Frac(ker ∂) = µ∗(OZ(Z)) such that f ⋅ ∂(A) ⊂ A. Conversely, for any
rational function f ∈ µ∗(OZ(Z)) such that f ⋅ ∂(A) ⊂ A, the derivation ∂′ = f∂ is
locally nilpotent on A, and so U ′ = exp(K ⋅ ∂′) ⊂ Uµ, see, e.g., [37, Prop. 1.1(b)].
It follows that Uµ = exp (µ∗H ⋅ ∂), where

H = {u ∈ OZ(Z) ∣∂(A) ⊂ µ∗(u−1)A} .
Note that H is an OZ(Z)-module. There is an isomorphism H

≅
Ð→ Uµ, u ↦

exp (µ∗(u) ⋅ ∂). Assume that the set D = {−div(u) ∣u ∈ H} is bounded above, and
consider the divisor D = sup D on Z. We claim that H = H0(Z,OZ(D)), that is,
u ∈ H if and only if −div(u) ≤ D. Since H ≅ Uµ, this yields the required isomorphism
Uµ ≅ H0(Z,OZ(D)).
To show the claim, it suffices to establish the inclusion H0(Z,OZ(D)) ⊂ H, the

converse inclusion being clear from the definition of D. Let u ∈ OZ(Z) be such
that −div(u) ≤D. Then there exists a cortège (u1, . . . , un) ∈ Hn such that −div(u) ≤
max1≤i≤n {−div(ui)}. We claim that u ∈ H, i.e., µ∗(u)∂A ⊂ A, or, which is equivalent,
that −div(µ∗(u)∂a) ≤ 0 for any a ∈ A. Indeed, one has

−div(µ∗(u)∂a) ≤max
1≤i≤n
{−div(µ∗(ui)∂a)} ≤ 0 ,

since −div(µ∗(ui)∂a) ≤ 0 for i = 1, . . . , n. This proves our claim.
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To finish the proof of the first statement of the lemma, it remains to show that
D is bounded above. Choose an element a ∈ ker∂2 ∖ ker∂ ⊂ A. Then ∂a = µ∗(h) ∈
ker∂ = µ∗(OZ(Z)), where h ∈ OZ(Z). For u ∈ H we have µ∗(h) ∈ ∂(A) ⊂ µ∗(u−1)A.
Hence there exists b ∈ O(Z) such that h = u−1b. Thus, −divu ≤ divh and so, divh
is an upper bound for D. Actually our argument shows that D ≤ D0, where the
effective divisor D0 = inf{div(h) ∣µ∗h ∈ ∂(ker ∂2)} on Z is given by the zero locus of
the ideal I = µ∗(∂(ker ∂2)) ⊂ OZ(Z).
Replacing in our construction ∂ by ∂′ results in replacing the divisor D by a

linearly equivalent one D′. Starting with a suitable derivation ∂′ of the form f∂,
where f ∈ µ∗(OZ(Z)), one can get as D′ an arbitrary representative of the class[D] ∈ PicZ. Thus our construction associates canonically the class [D] to the
A1-fibration µ∶X → Z.
Now the second assertion follows easily. Indeed, if PicZ = 0, then D = −div(u) =

div∞(u) for a rational function u ∈ K(Z). Then the locally nilpotent derivation
∂0 = µ∗(u)∂ ∈ DerA satisfies Uµ = exp ((ker ∂0) ⋅ ∂0). We leave the details to the
reader. �

Corollary 6.4. Under the assumptions of Theorem 6.3, Uµ is a unipotent Abelian
nested ind-group.

Proof. Let (Z̄,D′) be a completion of Z by a divisor D′ = Z̄ ∖Z. Then

H0(Z,OZ(D)) = lim
Ð→
n

H0(Z̄,OZ̄(D − nD′)) ,
whereH0(Z̄,OZ̄(D−nD′)) is a finite dimensional vector group for each n. Therefore,
the vector group Uµ ≅ H0(Z,OZ(D)) is a nested ind-group. �

Remarks 6.5. 1. Suppose that the affine variety X as in Definition 6.1 admits a
freeGa-action along the µ-fibers. Then the corresponding locally nilpotent µ-vertical
vector field ∂0 (that is, ∂0 is tangent to the µ-fibers) has no zero, and so, divides
any other locally nilpotent µ-vertical vector field on X . Then the equality Uµ =
exp ((ker ∂0) ⋅ ∂0) holds. This is the case, for instance, for any smooth Danielewski
surface xy − p(z) = 0 in A3.
2. Consider a line bundle L = (µ∶X → Z), that is, a locally trivial A1-bundle on Z

with a fixed (zero) section. Then any Ga-action on X along the µ-fibers is uniquely
defined by the image of the zero section. Vice versa, given a section S of µ, there
is a unique Ga-action on X along the µ-fibers which sends the zero section to S.
Hence Uµ ≅ H0(Z,OZ(L)) ≅ H0(Z,OZ(D)) for any divisor D, which represents the
class of L in PicZ.

Proposition 6.6. Under the assumptions of Theorem 6.3, there is an exact sequence

(11) 1→ Uµ → AutZ(X,µ)→∆µ → 1 ,

where ∆µ ≅ Υµ ×Zl for some l ≥ 0 and some subgroup Υµ ⊂ Gm.

Proof. We use the notation from the proof of Theorem 6.3. Since Xω ≅Z ω ×A1 we
have Autω(Xω, µ) ≅ O+ω(ω) ⋊O×ω(ω), where A+ stands for the additive group of an
algebra A and A× for its multiplicative group. The natural embedding AutZ(X,µ) ↪
Autω(Xω, µ) induces the commutative diagram

(12)

1 O+ω(ω) Autω(Xω, µ) O×ω(ω) 1

1 Uµ AutZ(X,µ) ∆µ 1

where ∆µ is the image of AutZ(X,µ) in O×ω(ω). By Samuel’s Units Lemma ([104,
Lem. 1], see also [83, Lem. 4.3]) we have O×ω(ω) ≅ Gm × ZN for some N ≥ 0. It is
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easily seen that any subgroup of the product Gm ×NN is a product of subgroups of
the factors. Hence ∆µ ≅ Υµ ×Zl for some l ≥ 0 and some subgroup Υµ ⊂ Gm. �

6.2. The surface case. Here we give some immediate applications of Theorem 6.3
to the neutral component and the unipotent radical of the group Aut(X,µ) in the
case of a normal affine surface X . In the next two sections we enterprise a more
thorough study of this group.

Remarks 6.7. 1. In the surface case, sequence (11) splits and the subgroup Υµ ⊂ Gm

is closed, see Proposition 8.24 and Theorem 8.25. Plausibly, the latter holds in the
general case as well.
2. Rentchler’s Theorem ([101]) says that any locally nilpotent derivation of the

polynomial ring K[x, y] is conjugated to the derivation ∂0 = f(x)∂/∂y for some
f ∈ K[x]. This can be generalized to the surfaces of class (ML0) as follows.
Proposition 6.8. Let X be a smooth Gizatullin Gm-surface, which is neither
Danilov-Gizatullin, nor special (see Examples 5.3 and 5.4). Then there exist two
locally nilpotent derivations ∂0, ∂1 ∈ DerOX(X) such that any other locally nilpotent
derivation of OX(X) is conjugated to a one of the form fi∂i for some i ∈ {0,1} and
fi ∈ ker ∂i.

Proof. This is an immediate consequence of Theorems 5.5 and 6.3. �

For the next theorem we address the reader to [11], [96]; cf. Proposition 4.7.

Theorem 6.9. Let X be a normal affine surface of class (ML1) or (ML2). Then
the neutral component Aut○X ⊂ AutX is isomorphic to

● Gr
m if X is of type (ML2, r), r ∈ {0,1,2}, and

● Uµ ⋊Gr
m if X is of type (ML1, r), r ∈ {0,1,2}, where µ∶X → B is a unique

A1-fibration on X over an affine curve B.

Remark 6.10. Recall (see 3.2) that, up to isomorphism, the class (ML2,2) consists
of a single surface (A1

∗)2, and the class (ML1,2) of a single surface A1 ×A1
∗; see 3.5

and 3.6 for a description of the corresponding automorphism groups.

From Corollary 6.4 and Theorem 6.9 we deduce the following result; see [11, Cor.
2.3] for an alternative proof in the case of a rational surface.

Corollary 6.11. If X is a surface of class (ML1) or (ML2), then Aut○X is a
solvable nested ind-group, and any two maximal tori in Aut○X are conjugated.

7. Formal neighborhood of a fiber in an A1-fibration

In this section we consider a normal affine surfaceX equipped with an A1-fibration
µ∶X → B over a smooth affine curve B. We study formal neighborhoods of fibers,
the corresponding arc spaces, and their stabilizers. These technical tools are used in
the next section in the proofs of our main Theorems 8.13 and 8.25 on the structure
of the automorphism group of an A1-fibration. Note that our technique is rather
different from that of ”tails” introduced in [26, §§1, 3] in studies of automorphism
groups of the Danilov-Gizatullin surfaces and based on Zariski’s theory of complete
ideals.

7.1. Chain of contractions.

Notation 7.1. Fix a minimal resolved SNC completion (X̄,D) of X such that µ
extends to a P1-fibration µ̄∶ X̄ → B̄. Recall that X̄ is smooth and contains the
minimal resolution of singularities of X , see Notation 5.8.
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We call the degenerate µ̄-fibers special and denote their union by T ⊂ X̄ . Thus,
T is a reduced effective divisor in X̄ . The components of a special fiber are smooth
rational curves, and its dual graph is a tree.
Let S be the unique section of µ̄ contained in the boundary divisor D = X̄ ∖X .

The dual graph ΓD of D is a rooted tree with a prescribed root vertex S. The
irreducible components of F ∶= µ̄−1(B̄ ∖B) correspond to the 0-vertices of degree 1
that are neighbors of S. The other branches of ΓD at S are nonempty connected
subgraphs of the dual graphs of the special fibers over B. Their intersection bilinear
forms are negative definite. The extended divisor Dext = S+F +T of (X̄, µ̄) contains
D.

Remark 7.2. By Miyanishi’s Theorem [89, Ch. 3, Lem. 1.4.4(1)], X has only cyclic
quotient singularities. The weighted dual graph of the minimal resolution of such a
singular point is a Hirzebruch-Jung string, see [9].

The following lemma is well known; see, e.g., [51, Lem. 7]. For the reader’s
convenience, we recall the proof.

Lemma 7.3. Let V be a smooth projective surface, Z be a smooth projective curve,
and let π∶V → Z be a P1-fibration, which admits a section s∶Z → V with image S.
Then there is a sequence of contractions

V = Vn → Vn−1 → . . . → V0

of (−1)-components of degenerate fibers disjoint from S and from the subsequent
images of S that terminates by a ruled surface V0 with an induced ruling π0∶V0 → Z.

Proof. The lemma is an immediate consequence of the following claim.

Claim. If a fiber F of π is degenerate, then either F contains at least two (−1)-
components, or such a component is unique and multiple. In any case, at least one
of the (−1)-components of F is disjoint from S.
Since F ⋅ S = 1, the second assertion follows from the first. Then also the lemma

follows by induction on the total number of components of degenerate fibers. Indeed,
while contracting a (−1)-component of the fiber as an induction step, we reproduce
the setting of the lemma with a smaller total number of fiber components.
To fix the first statement of the claim, we let F = π∗(z) =∑ni=1miFi, z ∈ Z. Since

F is degenerate and non-multiple we have n ≥ 2. Since F 2 = 0, by the adjunction
formula we obtain

−KV ⋅F = 2− 2πa(F ) = 2 and −KV ⋅Fi = F 2
i + 2− 2πa(Fi) = F 2

i + 2, i = 1, . . . , n .

Hence
n

∑
i=1

mi(F 2
i + 2) = 2 .

Since F 2
i ≤ −1 ∀i, the positive summands correspond exactly to the (−1)-components

of F . If Fi is a unique such component, then necessarily mi > 1. Now the statement
follows. �

Notation 7.4. Let Φ∶ X̄ → X̄0 be a birational morphism, which contracts all degen-
erate µ̄-fibers to non-degenerate ones yielding a P1-fiber bundle µ̄0∶ X̄0 → B̄. Then
Φ can be decomposed into a sequence of blowups of smooth points

(13) Φ∶ X̄ = X̄m
σm
ÐÐ→ X̄m−1

σm−1
ÐÐÐ→ . . .

σ1
ÐÐ→ X̄0,

where σi contracts the component Ti ⊂ X̄i of the image σi+1 ○ . . . ○ σm(T ) ⊂ X̄i to a
point pi ∈ X̄i−1. The proper transforms of the curves Ti (i < j), S, and F = µ̄−1(B̄∖B)
on the surfaces X̄j will be denoted by the same letters. The P1-fibration µ̄∶ X̄ → B̄
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induces P1-fibrations µ̄i∶ X̄i → B̄ so that σi∶ X̄i → X̄i−1 becomes a morphism of P1-
fibrations identical on B̄, i = 1, . . . ,m. By Lemma 7.3 we may assume that T1, . . . , Tm
do not meet S, and so, the centers of blowups p1, . . . , pm do not belong to S or
its images. Thus, Φ(T1 ∪ . . . ∪ Tm) is a finite subset of the smooth affine surface
X0 ∶= X̄0 ∖ (S ∪ F ). The induced A1-fibration µ0 = µ̄0∣X0

∶X0 → B is a locally trivial
bundle with fiber A1.

Lemma 7.5. µ0∶X0 → B admits a structure of a line bundle.

Proof. The ruling µ̄0∶ X̄0 → B̄ is the projectivization of a rank 2 vector bundle V → B̄.
The section S of π̄ corresponds to a line subbundle L ⊂ V . The exact sequence of
vector bundles over the affine curve B,

0→ L∣B → V ∣B → (V /L)∣B → 0

splits. Indeed, the obstacle to splitting sits in the group

Ext1(L,V /L) ≅H1(B,HomOB
(OB(L),OB(V /L)) ≅H1(B,OB(L)∨ ⊗OB

OB(V /L))
that vanishes due to Serre’s analog of Cartan’s A and B Theorems. This provides a
section of V ∣B → B disjoint with S, which can be taken for the zero section of a line
bundle µ0∶X0 → B. �

Notation 7.6. Fix a special fiber, say, T ′ = µ̄−1(β′), with its reduced structure,
where β′ ∈ B. Since the blowups with centers in different fibers commute, with a
suitable enumeration we may assume that

T ′ = T0 ∪ T1 ∪ . . . ∪ Tm′ ,

wherem′ ≤m and T0 is the proper transform of µ̄−10 (β′) ⊂ X̄0 and the only component
of T ′ meeting S. We denote by T (i) the image of T ′ in X̄i.

Definition 7.7. The blowup σi is called inner if pi is a singular point of T (i−1),
and outer otherwise. The corresponding component Ti is also called inner or outer,
respectively.

Definition 7.8. Let Ti, Tk (k < i) be two components of T ′ such that pi = σi(Ti) ∈ Tk,
see 7.4. We say that Tk is a parent of Ti if either Ti is outer, or Ti is inner and
pi ∈ Tk ∩ Tj on X̄i−1 for some j < k. Any component Ti, where i > 0, has exactly one
parent. 19

7.2. Formal neighborhoods and coordinate charts.

Definition 7.9. Given an algebraic variety Y and a closed subset Z ⊂ Y , we denote
by ÔY,Z the completion of the local sheaf OY,Z with respect to the filtration by

powers of the ideal sheaf I of Z. The corresponding formal scheme Spf ÔY,Z is
called a formal neighborhood of Z in Y , see, e.g., [6, Ch. 9] or [55, §10].

Notation 7.10. Given a surface V and a local coordinate chart (xp, yp) on V

centered at a smooth point p ∈ V 20, we identify the completion ÔV,p of the local ring

OV,p with the ringK[[xp, yp]]. Let σ∶ Ṽ → V be the blowup of p with exceptional (−1)-
curve E. The rational function yE = yp/xp defines an isomorphism yE∶E

≅
Ð→ P1. For

19The notion of a parent is not related to the notion of a mother component in 5.16.
20Such a coordinate chart (xp, yp) on V can be defined as follows. Consider an affine neigh-

borhood X of p in V , a closed embedding X ↪ AN , and a linear projection π∶AN
→ TpX . Let

U,V be linear functions on AN that restrict to coordinates in the tangent plane TpX . Then we let
xp = U ∣X and yp = V ∣X . Thus, p is the origin of this local chart.
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each q ∈ P1 ≅ A1∪{∞} we let E(q) = y−1
E
(q) ∈ E. The sheaf ÔṼ ,E inherits coordinates

of ÔV,p as follows:

ÔṼ ,E({yE ≠ 0}) = ÔV,p [ 1
yE

] = K[1/yE][[yp]],
ÔṼ ,E({yE ≠∞}) = ÔV,p[yE] = K[yE][[xp]].

For a point E(q) ∈ E the local coordinate chart centered at E(q) is given by

(14) (xE(q), yE(q)) =
⎧⎪⎪⎨⎪⎪⎩
(xp, yE − q), q ≠∞,

( 1
yE
, yp) , q =∞ .

Reversing formulas (14) yields

(15) (xp, yp) = {(xE(q), xE(q)(yE(q) + q)), q ≠∞,
(xE(q)yE(q), yE(q)) , q =∞ .

Letting xE = xp we call (xE, yE) the local coordinates near E.

Notation 7.11. We write p′ ⪰ p if p′ ∈ T (i+k) and σi+1 ○ . . . ○ σi+k(p′) = p ∈ T (i) for
some k ≥ 0 (that is, p′ is an infinitely near point of p). If p is the center of a blowup
σi+j , 1 ≤ j ≤ k, then we write p′ ≻ p. Otherwise, by abuse of notation, we write p = p′.

Notation 7.12. Tensoring with the ring ÔB,β′ = K[[t]], where t is a local coordinate
on B centered at β′, we restrict µ0 to the formal neighborhood of the fiber T ∗0 ∶=
T0 ∖ S = µ−10 (β′) ≅ A1 in X0, namely, to

ÔX0,T
∗
0
(T ∗0 ) = K[y0][[x0]],

where the coordinates (x0, y0) near the fiber T ∗0 ⊂X0 are chosen so that x0 = µ∗0(t),
and y0 = 0 defines the zero section of µ0∶X0 → B. Regarding y0 as a P1-coordinate
on T0 ⊂ X̄0, we define local coordinates at each point T0(q) of T ∗0 = T0 ∩X0 via (14).
For every i = 1, . . . ,m′ we define recursively local coordinates at the points of

the fiber T (i) ⊂ X̄i as follows. Assume that the local coordinates (xpi , ypi) centered
at a point pi ∈ X̄i−1 are already defined. As in 7.10 we infer first a P1-coordinate
yi = yTi

on Ti and then local coordinates near Ti(q) for each q ∈ P1. For any point
p ∈ T (i) ∖ (Ti ∪ S) we keep the same local chart (xp, yp) = (xσi(p), yσi(p)) as on the
surface Xi−1. In more detail, each point p ∈ T (i) admits a unique representation of
the form p = Tj(q) as in Notation 7.11, where j ≤ i and q ∈ P1. In particular, if
p = Tj ∩ Tk with j > k, then p = Tj(q), where q ∈ P1, and p cannot be represented as
Tk(q′) for q′ ∈ P1. Then we let (xp, yp) = (xTj (q)

, yTj(q)
).

Remark 7.13. If Tj ∩ Tk = {p} ⊂ X̄i, then Tj and Tk are the coordinate lines in
the local coordinates (xp, yp) near p. Up to permuting j and k one has p ⪰ Tj(∞),
p ⪰ Tk(q), where q ≠∞, and

(xp, yp) = ( 1
yj
, yk − q) .

Note that Tj(∞) is the point of Tj closest to S, and the component Tk separates Tj
and S in T (i).

7.3. Arcs and multiplicities. In this subsection we introduce the arc spaces of an
A1-fibration (see 7.10 and 7.14) and the multiplicities of arcs (see 7.18 and 7.19).

Definition 7.14 (arc space; see, e.g., [33, 60]). Given a variety V , an arc in V

is a parameterized formal curve germ SpecK[[t]] → V . The arc space Arc(V ) is
the K[[t]]-scheme consisting of all the K[[t]]-rational points of V . Given a closed
subvariety Z ⊂ V , we say that an arc ξ∶SpecK[[t]]→ V is centered in Z if the image
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in K[[t]] of the vanishing ideal of Z in OV (V ) is contained in the maximal ideal of
K[[t]]. In particular, if Z is a reduced point p ∈ V , then we say that ξ is centered at
p. We let Arc(V )Z denote the subscheme of all arcs centered in Z.

Example 7.15. Let V be a surface and p ∈ V be a smooth point with a local
coordinate chart (xp, yp) centered at p. The corresponding arc space is

Arc(V )p ={h∶ ÔV,p → K[[t]] ∣ h(mV,p) ⊆ tK[[t]]}
={(xp, yp)↦ (x(t), y(t)) ∣ x, y ∈ tK[[t]]}.

If σ∶ Ṽ → V is the blowup of p with exceptional (−1)-curve E, then σ induces an
isomorphism Arc(Ṽ )E ∖Arc(E) ≅ Arc(V )p ∖ {0}.
Notation 7.16. For a point p ∈ T (i) ∖ S ⊂ X̄i ∖ S (i ∈ {0, . . . ,m′}) we consider
the subset Arc(X̄i)∗p ⊂ Arc(X̄i)p of all arcs in X̄i centered at p whose generic point

does not belong to T ′. The map Arc(X̄i)∗p → Arc(X0)∗T ∗
0

⊂ Arc(X̄0)∗T0 induced by

σ1 ○ . . . ○ σi∶ X̄i → X̄0 is injective. This allows to identify Arc(X̄i)∗p with its image in
Arc(X0)∗T ∗

0

, where

Arc(X0)∗T ∗
0

=Arc(X0)T ∗
0
∖Arc(T ∗0 )

={(x0, y0)↦ (x(t), y(t)) ∣ x ∈ tK[[t]] ∖ {0}, y ∈ K[[t]]} .
Notation 7.17. Let multTi = mi be the multiplicity of Ti in the divisor µ̄∗m′(β′) =
∑m

′

i=0miTi , which corresponds to a special fiber µ̄−1m′(β′). 21 Thus, multTi = multTj
if Ti is outer and σi(Ti) = pi ∈ Tj , and multTi = multTj +multTk if Ti is inner and
pi ∈ Tj ∩ Tk (see 7.6). In particular, multTi is the same on every surface X̄j, j ≥ i.

Definition 7.18 (multiplicity of an arc). For an arc h ∈ Arc(X̄0)∗T0 , (x0, y0) ↦(x(t), y(t)), we define its multiplicity by multh = ordt x (= ordt(µ̄0)∗h). The multi-
plicity of an arc h ∈ Arc(X̄i)∗T (i) is defined as the multiplicity of the image of h in

Arc(X̄0)∗T0 .
Proposition 7.19. Let p ∈ T (i) and h ∈ Arc(X̄i)∗p, h∶ (xp, yp) ↦ (x(t), y(t)). 22 If
p ∉ Sing T (i) is a point of Tj, then

(16) multh =mult(Tj)ordt x.
If p ∈ Sing T (i) is an intersection of components Tj and Tk with σk+1 ○ . . . ○ σi(p) =
Tk(∞) (cf. 7.13), then
(17) multh =mult(Tj)ordt x +mult(Tk)ordt y.
Proof. We proceed by induction on i. The case i = 0 is trivial. Assume that the
assertion holds on X̄i−1. Then it also holds on T (i) ∖ Ti. Let then p = Ti(q), q ∈ P1,
so σi(p) = pi. We distinguish the following five cases:

● Ti is outer and q =∞;
● Ti is outer and q ≠∞;
● Ti is inner and q =∞;
● Ti is inner and q = 0;
● Ti is inner and q ≠ 0,∞.

These are depicted below in Figure 1 for Ti outer and in Figure 2 for Ti inner. All

21We distinguish between the divisor µ∗(β) and its reduced version, that is, the geometric fiber
µ−1(β).

22Since h ∈ Arc(X̄i)
∗
p, x(t) ≠ 0 in the former case and x(t), y(t) ≠ 0 in the latter one, thus the

formulas (16)–(17) are well defined.
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Figure 1. Ti is outer.
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σi

Tj

Tk

pi

Figure 2. Ti is inner.

these cases are treated similarly, so we consider just two of them and leave the others
to the reader.
Let first Ti be outer with a parent Tj , where p = Ti(q), q ≠ ∞. Then (xpi , ypi) =(xp, xp(yp + q)) by (15), so h∶ (xpi , ypi) ↦ (x(t), x(t)(q + y(t))) on Xi−1, and by the

induction conjecture

multh =mult(Tj)ordt x = mult(Ti)ordt x.
Let further Ti be inner and p = Ti(∞). Then h∶ (xpi , ypi) ↦ (x(t)y(t), y(t)) on Xi−1

by (15), and so, by the inductive conjecture,

multh =mult(Tj)(ordt x + ordt y) +mult(Ts)ordt y = mult(Tj)ordt x+
(mult(Tj) +mult(Ts))ordt y =mult(Tj)ordt x +mult(Ti)ordt y .

�

7.4. Puiseux arc spaces. In this subsection we introduce and study Puiseux arc
spaces.

7.20 (Puiseux arcs). Fix a point23 p ∈ T (i) ∖ S.
1. An invertible substitution is a change of variable t ↦ A(t), where ordtA = 1. All

such substitutions form a group acting on the arc space Arc(X̄i)∗p via

A(t).h∶ (xp, yp)↦ (xh(A(t)), yh(A(t))),
where h∶ (xp, yp) ↦ (xh(t), yh(t)). We call two arcs equivalent if they belong to
the same orbit of the action.

2. The coordinate line xp = 0 in a local chart (xp, yp) is a part of a component of T (i).
Hence x(t) ≠ 0 for any arc h ∈ Arc(X̄i)∗p , h∶ (xp, yp) ↦ (x(t), y(t)). So, a suitable

invertible substitution A(t) sends h to an arc h̃ = A(t).h∶ (xp, yp) ↦ (tn, ỹ(t)),
where n = ordt x and ordt ỹ = ordt y.

Such a change of variable t ↦ A(t) and an arc h̃ are defined uniquely up to a

composition with t↦ α ⋅ t, where α ∈ K, αn = 1. All the arcs equivalent to h̃ share
the same Puiseux expansion y = ỹ(x1/n). They form an orbit of the cyclic Galois
group for the reduction problem.

3. An arc h̃∶ (xp, yp)↦ (tn, ỹ(t)) with ỹ =∑∞i=ordt y aiti is called a Puiseux arc if

gcd({i ∣ ai ≠ 0} ∪ {n}) = 1.
Definition 7.21 (Puiseux arc space). Consider a point p ∈ T (i)∖S, a pair of positive
integers n, d ∈ Z>0, and a polynomial ψ =∑d−1i=1 ψit

i ∈ tK[t] such that

(18) gcd({i ∣ ψi ≠ 0} ∪ {n}) = 1,
that is, such that (xp, yp) ↦ (tn, ψ(t)) is a Puiseux arc. Assume also that ψ ≠ 0
if p is a node. The Puiseux arc space W = PuiX̄i,p

(ψ,n, d) on X̄i relative to the

23Warning: in what follows we never consider the points ‘at infinity’ p ∈ T (i) ∩ S.
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coordinate system (xp, yp) centered at p consists of all arcs equivalent to Puiseux
arcs of the form h∶ (xp, yp)↦ (tn, y(t)) with y ∈ ψ + tdK[[t]]. In other words,

W = {(xp, yp)↦ (A(t)n, y(A(t))) ∣ ordtA = 1, y ∈ ψ + tdK[[t]]}.
Thus, the elements of W share the same starting piece ψ of the Puiseux expansion.
The condition that ψ ≠ 0 if p is a node ensures thatW ⊂ Arc(X̄i)∗p . Furthermore, the
elements of W share the same multiplicity (see 7.18), which we denote by multW .
Any Puiseux arc space can be expressed in the coordinates (x0, y0) on X0, see

7.16. To this end, given a pair of positive integers n, d ∈ Z>0 and a polynomial
ψ =∑d−1i=0 ψit

i ∈ K[t] with a possibly nonzero constant term, we let

Pui(ψ,n, d) = PuiX̄0,T0(ψ0)(ψ −ψ0, n, d).
Thus, the constant term ψ0 is responsible for the choice of the center T0(ψ0) ∈ T0∖S.
Lemma 7.22. For any point p = Ti(q) ∈ T (i) ∖ S, i ∈ {0, . . . ,m′}, and any Puiseux
arc space W = PuiX̄i,p

(ψ,n, d) ⊂ Arc(X̄i)∗p, the image W ′ of W under the embed-

ding Arc(X̄i)∗p ↪ Arc(X̄i−1)∗pi induced by σi∶ X̄i → X̄i−1 is a Puiseux arc space in

Arc(X̄i−1)∗pi. More precisely,

W ′ =PuiX̄i−1,pi
(tn(q + ψ), n, d + n) if q ≠∞,(19)

W ′ =PuiX̄i−1,pi
(ψ̃, n + ordψ,d), if q =∞,(20)

where ord ψ̃ = ordψ.

Proof. According to Definition 7.21 one has

W = {(xp, yp)↦ (A(t)n, ψ(A(t)) + η(A(t))) ∣ ordtA = 1, η ∈ tdK[[t]]} .
Suppose first that p = Ti(q), where q ≠∞. By (14) we have (xpi, ypi) = (xp, xp(yp + q)).
Hence

W ′ = {(xpi , ypi)↦ (A(t)n, y(A(t))) ∣ ordtA = 1, y ∈ tn(q + ψ) + td+nK[[t]]}
is again a Puiseux arc space relative to the coordinate system (xpi , ypi) in X̄i−1.

More precisely, W ′ = PuiX̄i−1,pi
(ψ̃, n, d + n), where ψ̃(t) = tn(q + ψ(t)) ∈ K[t] is a

polynomial of degree < d + n satisfying (18).
Let further p = Ti(∞). Then one can write t = ∑∞i=1 αisi ∈ sK[[s]], where α1 ≠ 0 and

tnψ(t) = sn+ordψ. Plugging in t = t(s) sends the set ψ(t)+tdK[[t]] into ψ̃(s)+sdK[[s]]
for some polynomial ψ̃ ∈ sK[s] of degree < d and of order ord ψ̃ = ordψ. By (14) we
have (xpi, ypi) = (xpyp, yp). Hence

W ′ ={(xpi , ypi)↦ (A(t)ny(A(t)), y(A(t))) ∣ ordtA = 1, y ∈ ψ + tdK[[t]]}
={(xpi , ypi)↦ (Ã(s)n+ordψ, y(Ã(s))) ∣ ords Ã = 1, y ∈ ψ̃ + sdK[[s]]}

coincides with the Puiseux arc space PuiX̄i−1,pi
(ψ̃, n + ordψ,d) relative to the coor-

dinate system (xpi , ypi) in X̄i−1, where the polynomial ψ̃ ∈ sK[s] still satisfies (18).
Indeed, otherwise one can write ψ̃(s) = ϕ̃(sk), where ϕ̃ ∈ K[s], k > 1, and k∣n.
However, plugging in the expression s = s(t) ∈ tK[[t]] yields ψ(t) = ϕ(tk) for some
polynomial ϕ ∈ K[t]. The latter contradicts condition (18) for ψ. �

The following corollary is straightforward.

Corollary 7.23. Given a Puiseux arc space W = PuiX̄i,p
(ψ,n, d), its image under

the embedding Arc(X̄i)∗p ↪ Arc(X̄0)∗T0 is a Puiseux arc space, say Pui(ψ̃, ñ, d̃). In
particular, multW = ñ.
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Notation 7.24. Given a point p ∈ T (i) ∖Sing(T (i) ∪S), we let Pui(p) be the image
of PuiX̄i,p

(0,1,1) in Arc(X̄0)∗T0 . By the preceding corollary, Pui(p) is a Puiseux arc
space.

Corollary 7.25. Let Pui(p) = Pui(ψ,n, d), where p ∈ Tj ∖ S is not a node of T (i).
Then multPui(p) = n = multTj . Furthermore, n = 1 if and only if Tj is obtained via
a sequence of outer blowups.

Proof. The first statement follows from Corollary 7.23 and (16). The second follows
from the first due to the fact that mult(Tj) = 1 if and only if the component Tj is
obtained via a sequence of outer blowups. �

Remark 7.26. For each Puiseux space Pui(ψ,n, d) ⊂ Arc (X0) centered at a point
p ∈ T ∗0 there exists a surface X ′ and a sequence of blowups X ′ → X̄0 with centers
at infinitely near points of p such that Pui(ψ,n, d) = Pui(p′) for some point p′ ∈X ′,
p′ ⪰ p. So, there is a one-to-one correspondence between infinitely near points of
T ∗0 ⊂X0, and the Puiseux arc spaces.

7.5. Stabilizer of a special fiber. In this subsection we study the action of the
automorphism group of an A1-fibration on the Puiseux arc spaces of a special fiber.
We use the following notation.

Notation 7.27. Given a K-module M (a commutative K-algebra A, respectively),
we let Ga(M) (Gm(A), respectively) denote the additive group of M (the group of
units of A, respectively). We let also Aff(A) = Ga(A) ⋊Gm(A) denote the group of
affine transformations of the affine line over A.

Notation 7.28. Consider the following groups of automorphisms of the arc space24

Arc(X̄0)∗T0 :
H = {(x, y)↦ (ax,Q(x)y) ∣ a ∈ K×, Q = ∞∑

i=0

bix
i ∈ K[[x]]×} ≅ Gm(K[[t]]) ⋊Gm ,

T = {(x, y)↦ (ax, by) ∣ (a, b) ∈ (K×)2} ≅ (Gm)2 ,
G(i) = {(x, y)↦ (x, y + cixi) ∣ ci ∈ K} ≅ Ga ,

where as before x ∈ tK[[t]] ∖ {0}, y ∈ K[[t]], see 7.16.

The following lemma is immediate.

Lemma 7.29. We have AutArc(X̄0)∗T0 =
{(x, y)↦ (ax,Q(x)y + P (x)) ∣ a ∈ K×, P = ∞∑

i=0

cit
i ∈ K[[t]], Q = ∞∑

i=0

bit
i ∈ K[[t]]×} .

Consequently,

AutArc(X̄0)∗T0 = (
∞

∏
i=0

G(i)) ⋊H ≅ Aff(K[[t]]) ⋊Gm ,

where the factor Gm acts on Aff(K[[t]]) via t↦ at for a ∈ K×.

Notation 7.30. We let

StabfpsW ⊂ AutArc(X̄0)∗T0
denote the stabilizer of a subsetW ⊂ Arc(X̄0)∗T0 , where ‘fps’ stands for ‘formal power
series’. Attributing the lower index B to a group of automorphisms means passing
to the subgroup of automorphisms that act trivially on the first coordinate, that
is, verify a = 1 in the notation as above (cf., e.g., 6.1). In particular, we consider

24Recall that (x, y) stands for an arc in X̄0 and (x0, y0) for the local coordinates in X̄0.
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the subgroups AutBArc(X̄0)∗T0 ⊂ AutArc(X̄0)∗T0 , HB ⊂ H, and the one-dimensional
torus TB ⊂ T.

Notation 7.31. Given a Puiseux arc space W = Pui(ψ,n, d), we can decompose

(21) ψ(t) = ψreg(tn) + ψsing(t) ,
where ψsing ∈ K[t] is the sum of all monomials in ψ with exponents not divided by
n.

Lemma 7.32. Consider a Puiseux arc space W = Pui(ψ,n, d) ⊂ Arc(X̄0)∗T0. An

automorphism g ∈ AutArc(X̄0)∗T0, g∶ (x, y) ↦ (ax,Q(x)y + P (x)), stabilizes W if
and only if

(22) P (x) = ψreg(ax) − ψreg(x)Q(x) mod x⌈
d
n
⌉K[[x]],

where ⌈ d
n
⌉ stands for the smallest integer ≥ d

n
, and in the case n > 1 also

(23) {Q(sn)ψsing(s) = ψsing(αs) mod sdK[[s]]
αn = a

for some α ∈ K.

Proof. Consider an arc h ∈W ,

h∶ (x0, y0)↦ (A(t)n, y(A(t))) with A ∈ tK[[t]] ∖ {0} and y ∈ ψ + tdK[[t]] .
The automorphism g sends h to the arc

g.h∶ (x0, y0)↦ (a ⋅A(t)n, Q(A(t)n) ⋅ y(A(t)) + P (A(t)n)) .
Hence g.h ∈W if and only if

{a ⋅A(t)n = Ã(t)n
Q(A(t)n) ⋅ y(A(t)) +P (A(t)n) = ỹ(Ã(t))

for some Ã(t) ∈ tK[[t]] and ỹ ∈ ψ + tdK[[t]]. The first equation means that Ã(t) =
α ⋅A(t) for an nth root α of a. Letting s = A(t), the second equation holds for some
ỹ ∈ ψ + tdK[[t]] if and only if, with this root α,

(24) Q(sn) ⋅ ψ (s) + P (sn) − ψ(αs) ∈ sdK[[s]] .
Splitting ψ as in (21) leads to equations (22) and (23). �

Proposition 7.33. Consider a finite collection of Puiseux arc spacesWk = Pui(ψk, nk, dk),
k = 1, . . . , r, ordered so that d1

n1
≥ . . . ≥ dk

nk
. Let N = ⌈ d1

n1
⌉. Then in AutArc(X̄0)∗T0 one

has

(25)
r

⋂
k=1

StabfpsPui(ψk, nk, dk) = ( ∞∏
i=N

G(i)) ⋊ H̄h ≅ Ga(tNK[[t]]) ⋊ H̄h
for a subgroup H̄ ⊂ H, where H̄h = h ○ H̄ ○ h−1 with h = ψreg

1 ∈⊕
N−1
i=0 G(i).

Proof. In the system of equations (22)–(23) for allWk, k = 1, . . . , r, we can eliminate
P (x) for k = 2, . . . , r. This yields the system
(26)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (x) = ψreg
1 (ax) − ψreg

1 (x)Q(x) mod xNK[[x]],
ψ

reg

k (ax) − ψreg
1 (ax) = (ψreg

k (x) −ψreg
1 (x))Q(x) mod x

⌈
dk
nk
⌉
K[[x]], k = 2, . . . , r,

Q(sn)ψsing

k (s) = ψsing

k (αks) mod sdkK[[s]], k = 1, . . . , r,

αnk

k = a k = 1, . . . , r.
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The first equation expresses P (x) in terms of a and Q(x). This defines the subgroup
(27) {(x, y)↦ (ax,Q(x)y + ψreg

1 (ax) − ψreg
1 (x)Q(x) +

∞

∑
i=N

cixi)}
= ( ∞∏

i=N

G(i)) ⋊ (h ○H ○ h−1) ,
where h = ψreg

1 . The remaining equations define a subgroup H̄ ⊂ H. �

Notation 7.34. Given a special fiber T ′ = µ̄−1(β′) ⊂ X̄ , we let

(28) Stabfps T
′ = ⋂

k ∶σk is outer

Stabfps(Pui(pk)) ⊂ AutArc(X̄0)∗T0 ,
where pk = σk(Tk) ∈ X̄k−1 ∖ S. Taking in Proposition 7.33 a suitably reordered
collection (Wk = Pui(pk) ∣σk is outer) ,
we let N = N(T ′), H̄ = H(T ′), and h = h(T ′) denote the corresponding objects
provided by this proposition, and also let T(T ′) = T ∩H(T ′).
According to Proposition 7.33, with this notation we have

(29) Stabfps T
′ = ( ∞∏

i=N

G(i)) ⋊ H̄h ≅ Ga(tNK[[t]]) ⋊ H̄h .
Corollary 7.35. Given a special fiber T ′ = µ−1(β′) ⊂ X̄, the following conditions
are equivalent:

● H(T ′) = H,
● H(T ′) ⊃ TB,
● the dual graph ΓT ′ is a linear chain.

Proof. We start with the following observation. Clearly, an inner component Ti of
T ′ which is not a parent is a (−1)-curve. After contraction of Ti we obtain a new
special fiber, say T ′′, where T ′′ and T ′ are both linear or non-linear simultaneously,
and Stabfps T ′′ = Stabfps T ′, hence also H(T ′′) = H(T ′). Thus, we may assume in
the sequel that each inner component of T ′ is a parent.
Assume first that there exists an inner component Ti of T ′. By the previous

observation such a component Ti with a maximal value of i is a parent of an outer
component. Hence in this case ΓT ′ is non-linear. Furthermore, being inner, Ti
belongs to the preimage of Tk(∞) for some Tk. Then by (20) the corresponding
Puiseux arc space is of form Pui(ψ,n, d) with n > 1. So, the corresponding equations
(23) are nontrivial. It follows that dimH(T ′)∩T ≤ 1 and H(T ′)∩TB is finite. Thus,
all three conditions of the lemma fail.
Assume further that all components of T ′ are outer. If T ′ is linear, then Tm′ is

the only non-parent, all the other components of T ′ being its successive parents. By
(19) the corresponding Puiseux arc space is of form Pui(ψ,1, d), and Stabfps T ′ =
StabfpsPui(ψ,1, d). In this case (26) contains just one equation (of form (22)), and
so, H(T ′) = H ⊃ TB. Thus, under this setup all three conditions of the lemma are
fulfilled.
Finally, assume that T ′ is non-linear. Then there is a component Tk ⊂ T ′ which

is a parent for at least two other components with centers, say, Tk(q1) and Tk(q2).
The corresponding Puiseux arc spaces are of form Pui(ψ + q1td−1,1, d) and Pui(ψ +
q2td−1,1, d) for some q1 ≠ q2, some d ∈ Z>0, and some polynomial ψ ∈ K[t] of degree
≤ d−2. Inspecting system (26), for i = d−1 we obtain the equalities cd−1 = q1(ad−1−b) =
q2(ad−1−b). This implies that b = ad−1. Hence we can conclude that dimH(T ′)∩T ≤ 1
and H(T ′)∩TB is finite. So, once again, all three conditions of the lemma fail. �
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Example 7.36. Consider a sequence of blowups

X̄3

σ3
Ð→ X̄2

σ2
Ð→ X̄1

σ1
Ð→ X̄0 = P

1 × P1 ,

where

σ1 ∶T1 ↦ T0(0);
σ2 ∶T2 ↦ T1(∞) = T0 ∩ T1;
σ3 ∶T3 ↦ T2(1)

The stabilizer of the Puiseux arc space of the point σ3(T3) = T2(1) is contained in the
stabilizer of σ1(T1) = T0(0), hence it coincides with Stabfps T ′. Using Lemma 7.22
we obtain

Pui(σ3(T3)) = PuiX̄2,T2(1)(0,1,1) = PuiX̄1,T1(∞)(t,1,2) = Pui(t,2,2) ,
where by definition

Pui(t,2,2) = {(x0, y0)↦ (A(t), y(A(t))) ∣ ordtA = 1, y ∈ t + t2K[[t]]} .
By Lemma 7.32, Stabfps(PuiX̄0,T0(0)(t,2,2)) is defined by equations c0 = 0, b20 = a. It
follows that

Autfps T
′ = ( ∞⊕

i=1

G(i)) ⋊T(T ′) ≅ Ga(tK[[t]]) ⋊T(T ′) ,
where T(T ′) ⊂ T is the one-parameter subgroup defined by b2 = a, see 7.16. The
subgroup T(T ′) ∩ TB has order two and is generated by the involution (x0, y0) ↦(x0,−y0).
Our blowup procedure leads to an SNC completion (X̄3,D) of a smooth affine

surface X = X̄3 ∖D. The (−1)-standard extended graph of this completion looks as
follows

Dext ∶ ❝

0

❝

−1
❝

−2
❝

−2

❝

−1

❝

−2
After contraction of the subchain [[−1,−2,−2,−2]] we arrive at a new completion(P2,C) of X , where C ⊂ P2 is a smooth conic. Thus, X ≅ P2 ∖ C. The (−1)
component T3 of multiplicity 2 in the central fiber becomes in P2 a tangent line L to
C. The original A1-fibration X → A1 extends to the pencil of conics in P2 generated
by C and 2L. The group Aut(P2 ∖C) is well known; see, e.g., [26, §2] and also 3.8
and 3.9 and the references therein.

8. Automorphism groups of A1-fibrations on surfaces

For an A1-fibration µ∶X → B on a normal affine surface X over a smooth affine
curve B, we describe in Subsection 8.3 the automorphism group Aut(X,µ) up to
passing to a finite index normal subgroup, see Theorems 8.13 and 8.25. In particular,
this applies to the full automorphism group of an ML1-surface.

8.1. Preliminaries.

8.1. We keep the notation of Section 7. In particular, we consider the induced P1-
fibration µ̄∶ X̄ → B̄ on a minimal resolved completion X̄ of X , and a sequence of
blowdowns

(30) Φ∶ X̄ = X̄m
σm
ÐÐ→ X̄m−1

σm−1
ÐÐÐ→ . . .

σ1
ÐÐ→ X̄0

of (−1)-components of the special fibers Ti = µ̄−1(βi) of µ̄ with β1, . . . , βns
∈ B, which

terminates by a smooth ruling µ̄0∶ X̄0 → B̄. We assume as before that σi contracts
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the component Ti ⊂ X̄i ∖ S to a point pi ∈ X̄i−1, where S is the unique horizontal
component of D = X̄ ∖X and a section of µ̄. Let also F = µ̄−1(B̄ ∖B). Since B is
affine, F ≠ ∅, and we may suppose that F is a union of irreducible fibers of µ̄. We
let

T =
ns

⋃
i=1

Ti =
m

⋃
j=1

Tj ∪
ns

⋃T0,βi ,

where T0,βi = µ̄
−1
0 (βi) ⊂ X̄0, i = 1, . . . , ns. Thus, D ⊂ Dext ∶= S ∪ F ∪ T , and the dual

graphs of both D and Dext are trees. We let T
(j)
i be the image of Ti in Xj .

Notation 8.2. Let AutB(X,µ) ⊂ Aut(X,µ) be the subgroup of all automorphisms
of X that send each fiber of µ into itself, and AutµB ⊂ AutB be the subgroup of
all automorphisms of B induced by the elements of Aut(X,µ).
The following fact is immediate.

Lemma 8.3. There is an exact sequence

(31) 1→ AutB(X,µ)→ Aut(X,µ)→ AutµB → 1.

8.2. Stabilizers of arc spaces. We need the following fact.

Lemma 8.4. Any automorphism α ∈ Aut(X,µ) lifts to the minimal resolution of
singularities of X and extends to an automorphism of X̄ ∖F .

Proof. The first statement is well known (cf. e.g., [41, Lem. 2.2]) and follows, for
instance, from the uniqueness of the minimal resolution of singularities of surfaces.
Thus, any automorphism g ∈ Aut(X,µ) induces a birational automorphism of X̄
regular in X̄ ∖D. Since g preserves the A1-fibration µ, it extends regularly to the
section S. Furthermore, g induces a birational transformation g∗ of the dual graphs
ΓD and ΓDext

fixing the vertex S, which transforms the dual graphs ΓF and ΓT into
themselves. By our convention in 7.1 and 8.1 ΓD is minimal. So, the section S and
the components of F are the only possible zero vertices of ΓD. All the maximal
linear chains in ΓD⊖(S+F ) are admissible, that is, with all weights ≤ −2. According
to Theorem 3.1 in [40], g∗ can be decomposed into a sequence of elementary trans-
formations in zero vertices in F followed by an automorphism, see Definition 5.9.
Indeed, since S is fixed by g∗, also these elementary transformations and the auto-
morphism fix S. Hence the elementary transformations in the decomposition of g∗
are performed only near components of F . Now the second statement follows. �

Notation 8.5. In the notation of 7.1, we let

Aut●(X̄,F ) ⊂ Aut(X,µ)
stand for the subgroup of all automorphisms of X preserving µ and admitting an
extension to automorphisms of X̄ ∖ F , which send each component of T into itself.
Similarly, given i ∈ {0, . . . ,m}, we let Aut●(X̄i, F ) be the group of all birational
automorphisms of X̄i which preserve µ̄i, send the section S and each component
T0,β1, . . . , T0,βns

, T1, . . . , Ti of T (i) into itself, and induce automorphisms of X̄i ∖ F
(see 7.4 and 8.1). Thus, Aut●(X̄,F ) = Aut●(X̄m, F ).
Lemma 8.6. Aut●(X̄,F ) ⊂ Aut(X,µ) is a normal subgroup of finite index.

Proof. Let S(n) stand for the symmetric group on n symbols. By Lemma 8.4 there
is a natural embedding Aut(X,µ) ↪ Aut(X̄ ∖F, µ̄). Clearly, any α ∈ Aut(X̄ ∖F, µ̄)
permutes the special fibers Tj of µ̄ and the components of T . Hence α defines a
permutation ρ(α) ∈ S(m + ns), where ρ∶Aut(X,µ)→ S(m + ns) is a homomorphism
with ker ρ = Aut●(X̄,F ). Now the lemma follows. �
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Notation 8.7 (stabilizers of arc spaces). The group Aut●(X̄i, F ) acts naturally on
the arc space Arc(X̄i ∖ F ). Given a subset W ⊂ Arc(X̄i ∖ F ), we let Stabi(W ) be
the stabilizer of W in Aut●(X̄i, F ).
In the next proposition we identify the groups Aut●(X̄i, F ) and Stabi(W ) with

their images in Aut●(X̄0, F ).
Proposition 8.8. There is a natural embedding Aut●(X̄,F ) ↪ Aut●(X̄0, F ) such
that

(32) Aut●(X̄,F ) = ⋂
i ∶ σi is outer

Stab0(Pui(pi)) ⊂ Aut●(X̄0, F ) .
Proof. We proceed by induction on i. Assume that our assertion holds for X̄i−1.
Since Aut●(X̄i, F ) stabilizes Ti, there is a natural homomorphism Aut●(X̄i, F ) →
Aut●(X̄i−1, F ), which embeds Aut●(X̄i, F ) onto the stabilizer of the point pi = σi(Ti)
in Aut●(X̄i−1, F ). The latter stabilizer coincides with Stabi−1(Arc(X̄i−1)pi).
If Ti is inner, then pi is already stabilized by Aut●(X̄i−1, F ), thus we have

Aut●(X̄i, F ) ≅ Aut●(X̄i−1, F ). Assume now that Ti is outer. Then

Stabi−1(Arc(X̄i−1)pi) = Stabi−1(Pui(pi)) ,
where by abuse of notation we write Pui(pi) for PuiX̄i−1,pi

(0,1,1) (cf. 7.24). In-
deed, Pui(pi) is the subset of arcs of minimal multiplicity (equal to mult(Ti)) in
Arc(X̄i−1)pi. This subset is stable under the action on Arc(X̄i−1)pi of the stabilizer
of pi in Aut●(X̄i−1, F ). This gives the inclusion

Stabi−1(Arc(X̄i−1)pi) ⊂ Stabi−1(Pui(pi)) .
The inverse inclusion is also clear, since the elements of Stabi−1(Pui(pi)) fix the
point pi. Passing to the images of our subgroups under their natural embeddings in
Aut●(X̄0, F ), which we denote by the same symbols, we obtain the equalities

Aut●(X̄i, F ) = Stabi−1(Pui(pi)) = Aut●(X̄i−1, F ) ∩ Stab0(Pui(pi)).
This yields (32) for Aut●(X̄i, F ), since by the inductive conjecture, it holds for the
group Aut●(X̄i−1, F ). �

8.3. Automorphism groups of A1-fibrations.

Notation 8.9. We fix an (AutµB)-stable Zariski open subset ω ⊂ B∖{β1, . . . , βns
},

where as before β1, . . . , βns
∈ B are the points that correspond to the special fibers of

µ∶X → B, see 8.1, such that µ admits a trivialization over ω. We assume that ω is
maximal with these properties. We let Xω = µ−1(ω) ≅ ω×A1; this is an (Aut(X,µ))-
stable dense open subset in X .

Remark 8.10. If the curve B is rational, then ω = B ∖ {β1, . . . , βns
} and Xω is

the complement in X to the union of special fibers. Indeed, µ∣Xω
= µ0∣(X0)ω is the

projection of a line bundle (see Lemma 7.5), which is trivial in this case. As follows
from Lemma 8.4, the open set B ∖ {β1, . . . , βns

} is (AutµB)-stable.
In what follows we treat separately the cases ω ≅ A1

∗,A
1 and ω ≇ A1

∗,A
1, see

Theorems 8.13 and 8.25, respectively. In the second case, the base curve B is not
supposed to be rational.

8.3.1. Case B = A1, ω ≅ A1
∗. If ω = B ≅ A1 or ω = B ≅ A1

∗, then X = Xω ≅ A2 and
X =Xω ≅ A1

∗ ×A1, respectively, and the group Aut(X,µ) is the usual de Jonquières
group and its analog as in 3.3 and 3.5, respectively. Hence we assume in the sequel
that B = A1 and ω = A1

∗. This is the case, for instance, for any Gizatullin surface
different from the plane A2. For the ML1-surfaces, this case was studied in [11]; our
Theorem 8.13 precises Corollary 2.3 in [11].
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8.11. We let F = µ̄−1(∞) and T = T1 = µ̄−1(0). Performing suitable elementary
transformations with centers on F (see Definition 5.9) one can achieve the equality
S2 = 0. Then the linear pencil ∣S∣ on X̄ defines a second P1-fibration ν̄∶ X̄ → P1 such
that S = ν̄−1(∞). The birational morphism

Φ∶ X̄ → X̄0 = P
1 × P1, w ↦ (µ̄(w), ν̄(w)) ,

is biregular on X̄ ∖ µ̄−1(0). (In the notation of 5.12, µ̄ = Φ0 and ν̄ = Φ1, while F = C0

and S = C1.) The affine coordinate on B̄ ≅ P1 is chosen so that B̄ ∖ B = {∞},
B ∖ ω = {0}, and so, F = {∞} × P1 ⊂ P1 × P1.

Remark 8.12. On X̄0 = P1 × P1 we have (cf. 7.28)

Aut●(X̄0, F ) = {(x0, y0)↦ (ax0, by0 + P (x0)) ∣ (a, b) ∈ (K×)2, P = N

∑
i=0

cix
i
0 ∈ K[x0]}

≅ ( ∞⊕
i=0

G(i)) ⋊T ≅ Ga(K[[t]]) ⋊ (Gm)2 ,
where

T = {(x0, y0)↦ (ax0, by0) ∣ (a, b) ∈ (K×)2} ≅ (Gm)2
and

G(i) = {(x0, y0)↦ (x0, y0 + cixi0) ∣ ci ∈ K} ≅ Ga .

The natural embedding Aut●(X̄0, F ) ↪ AutArc(X̄0)∗T0 is tautological in coordi-
nates (a, b, c0, . . .) under substitution (x0, y0) = (x, y) and corresponds to the em-
bedding of the polynomial ring into the ring of formal power series. So, all
results of the previous section hold automatically for Aut●(X̄,F ). In partic-
ular, Stab0W = StabfpsW ∩ Aut●(X̄0, F ) for any subset W ⊂ Arc(X̄0)∗T0 , and

Aut●(X̄,F ) = Stabfps T ∩Aut●(X̄0, F ).
Theorem 8.13. Let X be a normal affine surface, and let µ∶X → A1 be an A1-
fibration with a unique special fiber µ−1(0). Then the automorphism group Aut(X,µ)
is a finite extension of

(33) Aut●(X̄,F ) = ( ∞⊕
k=d

G(k)) ⋊Λµ ≅ Ga(tdK[[t]]) ⋊Λµ ,
where d ∈ Z>0 and Λµ is conjugate to a closed subgroup of the standard torus T by
an element of ⊕d−1

k=0G(k). Furthermore, if dimΛµ = 1, then the action of Λµ on X

is transversal, i.e., the intersection of a Λµ-orbit and a µ-fiber is always finite.

Proof. As mentioned in Remark 8.12, for any W ⊂ Arc(X̄0)T0 we have

Stab0W = StabfpsW ∩Aut
●(X̄0, F ) .

Hence by Proposition 8.8,

Aut●(X̄,F ) = Stabfps T ∩Aut●(X̄0, F ) .
Now Proposition 7.33 implies (33). Finally, Aut(X,µ) is a finite extension of
Aut●(X̄,F ) by Lemma 8.6. �

8.3.2. Case ω ≇ A1
∗,A

1.

8.14. As before, the notation AutB with the base curve B as a subscript means
passing to the subgroup of automorphisms of (X,µ) which induces the identity on
B. In particular,

Aut●B(X̄,F ) = Aut●(X̄,F ) ∩AutB(X̄ ∖F ) .
Lemma 8.15. If ω ≇ A1

∗,A
1 then Aut●B(X̄,F ) is a normal subgroup of Aut(X,µ)

of finite index.
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Proof. By Lemma 8.6, Aut●(X̄,F ) ⊲ Aut(X,µ) is a normal subgroup of finite index.
Due to (31), AutB(X,µ) ⊲ Aut(X,µ). Hence

Aut●B(X̄,F ) = Aut●(X̄,F ) ∩AutB(X,µ) ⊲ Aut(X,µ) .
Likewise in (31) we have an exact sequence

(34) 1→ Aut●B(X̄,F )→ Aut●(X̄,F )→ AutµB ⊂ AutB .

Since ω is AutµB-stable, there is an inclusion AutµB ⊂ Autω, where ω ≇ A1
∗,A

1

is an affine curve of non-exceptional type. Hence Autω is a finite group. Now the
assertion follows. �

8.16. Using the equivariant local trivialization Xω ≅ ω ×A1 (see 8.9), for (x0, y0) ∈
ω ×A1 we can write

(35) AutωXω = {(x0, y0)↦ (x0,Qy0 + P ) ∣ Q ∈ O×ω(ω), P ∈ O+ω(ω)} ,
where A× stands as before for the multiplicative group of an algebra A and A+ for
its additive group. Note that O+ω(ω) is an infinite dimensional Abelian unipotent
group. In fact, O+ω(ω) = Uµ(Xω) ⊂ AutωXω is the subgroup of automorphisms
that act on the µ-fibers by translations, and O×ω(ω) ⊂ AutωXω is the subgroup of
automorphisms that fix the zero section of the (trivial) line bundle µ∣Xω

∶Xω → ω.
The functions Q ∈ O×ω(ω) have their zeros and poles in B̄ ∖ ω. So, there is a

homomorphism O×ω(ω) → ZN with kernel K× ⊂ O×ω(ω) consisting of the nonzero
constants, where N is the number of punctures of ω. Thus, O×ω(ω) ≅ Gm × Zr for
some r < N , and

AutωXω ≅ O
+
ω(ω) ⋊O×ω(ω) ≅ O+ω(ω) ⋊ (Gm ×Zr).

Notation 8.17. We let X0 = X̄0 ∖ (S ∪ F ). By Lemma 7.5, µ0 = µ̄0∣X0
∶X0 → B

has a structure of a line bundle, say, L0 with a zero section given in Xω ≅ ω ×A1,
Xω ⊂X0, by equation y0 = 0. Let Uµ0 ⊂ AutB(X0, µ0) be the unipotent de Jonquères
group of the automorphisms which restrict to translations on general µ-fibers (see
Definition 6.1).

Proposition 8.18. For some s ≥ 0 there are decompositions

(36) Aut●B(X̄0, F ) = AutB(X̄0, F ) ≅ Uµ0 ⋊ΛB ≅ Uµ0 ⋊ (Gm ×Zs) ,
where ΛB = AutB L0 ≅ O×B(B).
Proof. The subgroup Uµ0 ⊂ Aut

●
µ(X̄0, µ̄0) acts freely and transitively on the space

H0(B,OB(L0)) of global sections of L0. Therefore, Aut●B(X̄0, F ) is generated by
Uµ0 ≅ H

0(B,OB(L0)) and the subgroup ΛB ⊂ Aut
●
B(X̄0, F ) of automorphisms that

fix the zero section. This leads to the first decomposition in (36). By our assumption,
the trivialization Xω ≅ ω ×A1 and the line bundle L0 share the same zero section.
Hence there is an embedding ΛB ↪ O×ω(ω) ≅ Gm ×Zr with ΛB ⊃ Gm, see 8.16. Now
the second isomorphism in (36) follows.
To show the last assertion, it suffices to observe that the group Aut●B(X̄0, F ) =

Uµ0 ⋊ΛB acts on H0(B,OB(L0)) via
g = (P,Q)∶Ψ ↦ QΨ +P ∀Ψ ∈H0(B,OB(L0)) ,

where P ∈ Uµ0 = H
0(B,OB(L0)) and Q ∈ ΛB = AutB L0 = O×B(B). �

Remark 8.19. The neutral component Gm of the group O×B(B) acts on L0 by
homotheties; this defines a 1-torus TB ⊂ AutB L0 (cf. 7.28).
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8.20. For every j = 1, . . . , ns there is a natural embedding

ιj ∶Aut●B(X̄0, F )↪ AutBArc(X̄0)∗T0,βj
(see Remark 8.12), where ιj embeds the factors of the decomposition AutB(X̄0, F ) ≅
Uµ0 ⋊ΛB into the respective factors of the decomposition

AutB Arc(X̄0)∗T0,βj = (
∞

∏
i=0

G(i)) ⋊HB ≅ Ga(K[[t]]) ⋊Gm(K[[t]]) ≅ Aff(K[[t]]) ,
see 7.27 and 7.28. Indeed, in both cases the first factor is the unipotent radical
(acting by translations on fibers), and the second consists of the automorphisms
preserving the zero section. Thus,

Uµ0 ↪

∞

∏
i=0

G(i) ≅ Ga(K[[t]]) and ΛB ↪HB ≅ Gm(K[[t]]) .
For a special fiber T ′ = Tj ⊂ T we have by (29),

Stabfps Tj =
⎛
⎝
∞

∏
i=Nj

G(i)⎞⎠ ⋊H
hj
j ,

where in the notation of 7.34, hj = h(Tj) ∈ ⊕Nj−1
i=0 G(i) with Nj = N(Tj), and Hj =

H(Tj) ⊂ H.
In Proposition 8.24 below we gather these local data for different special fibers.

In the proof we use the following lemma.

Lemma 8.21. Given natural numbers N1, . . . ,Nns
∈ Z>0 and a collection (ψj)j=1,...,ns

,
where ψj ∈ OB,βj ∀j, there exists a section Ψ ∈ H0(B,OB(L0)) such that

ιj(Ψ) ≡ ψj mod m
Nj

βj
∀j = 1, . . . , ns .

Proof. Indeed, consider the coherent ideal sheaf

I = ( ns

∏
j=1

m
Nj

βj
) ⋅OB(L0) ⊂ OB(L0) .

The local data (ψj)j defines a section of the skyscraper sheaf OB(L0)/I on the affine
curve B. By the Serre analog of Cartan’s A and B Theorems, H1(B,I) = 0. Hence
the latter section can be interpolated by a global section Ψ ∈H0(B,OB(L0)). �

The following corollary is immediate.

Corollary 8.22. There exists h ∈ Uµ0 = H
0(B,OB(L0)) such that

(37) ιj(h) ≡ hj mod tNjK[[t]] ∀j = 1, . . . , ns ,
where Nj and hj are as in 8.20.

Notation 8.23. We let D0 =∑ns

j=1Nj[βj] and
Λµ,B =

ns

⋂
j=1

ι−1j (ιj(ΛB) ∩Hj) ⊂ ΛB ,
Uµ = {P ∈H0(B,OB(L0)) = Uµ0 ∣ divP ≥D0} = H0(B,OB(−D0)) .

Proposition 8.24. We have

(38) Aut●B(X̄,F ) = Uµ ⋊Λhµ,B ,

where h ∈ Uµ0 verifies (37).
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Proof. Let h ∈ Uµ0 verifies (37), see Corollary 8.22. Letting h−1 ○ g ○ h = (P,Q) ∈
Uµ0⋊ΛB (that is, letting g = (P +h(1−Q),Q)), we let also Pj = ιj(P ) and Qj = ιj(Q).
We claim that the following are equivalent:

(i) g ∈ Aut●B(X̄,F );
(ii) ιj(g) ∈ Stabfps Tj for each j = 1, . . . , ns;
(iii) ιj(h−1 ○ g ○ h) ∈ (∏∞i=Nj

Ga(i)) ⋊Hj ∀j;
(iv) Pj ∈∏∞i=Nj

Ga(i) and Qj ∈ H(Tj) ∀j;
(v) divP ≥D0 =∑ns

j=1Nj[βj] and Q ∈ ⋂ns

j=1 ι
−1
j (ιj(ΛB) ∩Hj);

(vi) P ∈ Uµ and Q ∈ Λµ,B.

Indeed, it follows from Propositions 7.33 and 8.8 that an element g ∈ Aut●B(X̄0, F )
belongs to Aut●B(X̄,F ) if and only if ιj(g) ∈ Stabfps Tj for each j, where Stabfps Tj is
defined as in (28). This proves the equivalence (i)⇔(ii).
After replacing h in (iii) by hj , the equivalence (ii)⇔(iii) follows from Proposi-

tion 7.33. By Corollary 8.22 this holds even without this replacement.
The equivalence (iii)⇔(iv) is immediate, and (iv)⇔(v)⇔(vi) follow from our

definitions, see 7.28 and 8.23. This proves the equivalence (i)⇔(vi). Now the
proposition follows. �

Theorem 8.25. Let µ∶X → B be an A1-fibration on a normal affine surface X
over a smooth affine curve B. If, in the notation of 8.9, ω ≇ A1

∗,A
1, then the

automorphism group Aut(X,µ) is a finite extension of

(39) Aut●B(X̄,F ) ≅ Uµ ⋊ (Υµ ⋊Zl) for some l ≥ 0 ,

where Uµ = H0(B,OB(−D0)) with D0 as in 8.23, and Υµ = TB ∩ Λµ,B, see 8.19.
Furthermore, either Υµ is a finite cyclic group, or Υµ = TB ≅ Gm and each µ-fiber
µ−1(b), b ∈ B, is isomorphic to A1.

Proof. By Lemma 8.15, Aut●B(X̄,F ) ≅ Uµ⋊Λµ,B is a normal subgroup of finite index
in Aut(X,µ). To deduce (39) it suffices to apply Proposition 8.24, where

Λµ,B ↪ ΛB = O
×
B(B) ≅ TB ×Zs ≅ Gm ×Zs ,

see 8.18 and 8.19. For the last assertion, see [36, §3] and [37, Rem. 3.13(iii)]. �

The following corollary is immediate from Corollary 6.4 and Theorems 8.13 and
8.25 (cf. Corollary 6.11).

Corollary 8.26. For any A1-fibration µ∶X → B on a normal affine surface X

over a smooth affine curve B, the group Aut(X,µ) is an extension of a metabelian
nested ind-group of rank ≤ 2 by at most countable group. Any two maximal tori in
Aut(X,µ) are conjugated.

8.27. If µ∶X → B admits an effective Gm-action along the fibers of µ, that is,
Υµ ≅ Gm, then µ is the projection of a parabolic Gm-surface (see Definition 4.13).

Proposition 8.28. Under the assumptions of Theorem 8.25, Υµ ≅ Gm if and only
if X is a parabolic Gm-surface, if and only if the connected components of the dual
graph ΓT are linear chains. In the case ω ≅ A1

∗ we have the equivalences

Υµ = Gm⇔ Λµ,B ≅ T⇔ rkAutX = 2 ,

where the latter means that X is an affine toric surface.

Proof. By Proposition 8.28, the components of ΓT are linear if and only if H = Hj
for every special fiber Tj . The latter is true if and only if Hj ⊃ TB for each j, which
is equivalent to ΓT ⊃ TB. Now the proposition follows. �
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École d’Été 2000: Géométrie des variétés toriques, http://www-fourier.ujf-grenoble.fr/
[19] A. J. Crachiola, On automorphisms of Danielewski surfaces, J. Algebraic Geom. 15 (2006),
111–132.
[20] D. Daigle, Classification of weighted graphs up to blowing-up and blowing-down.
math.AG/0305029, 2003, 47p.
[21] D. Daigle, Classification of linear weighted graphs up to blowing-up and blowing-down, Canad.
J. Math. 60 (2008), 64–87.
[22] D. Daigle, Affine surfaces with trivial Makar-Limanov invariant, J. Algebra 319 (2008), 3100–
3111.
[23] D. Daigle, R. Kolhatkar, Complete intersection surfaces with trivial Makar-Limanov invariant,
J. Algebra 350 (2012), 1–35.
[24] W. Danielewski, On a cancellation problem and automorphism group of affine algebraic vari-
eties, preprint, Warsaw, 1989.
[25] V. I. Danilov, M. H. Gizatullin, Automorphisms of affine surfaces. I, Math. USSR Izv. 9
(1975), 493–534.
[26] V. I. Danilov, M. H. Gizatullin, Automorphisms of affine surfaces. II, Math. USSR Izv. 11
(1977), 51–98.
[27] V. I. Danilov, M. H. Gizatullin, Examples of non-homogeneous quasihomogeneous surfaces
(Russian), Math. USSR Izv. 38 (1974), 42–58.
[28] I. Dimitrov, I. Penkov, J. A. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic
groups, Amer. J. Math. 124 (2002), 955–998.

51



[29] F. Donzelli, Makar-Limanov invariants, Derksen invariants, flexible points, arXiv:1107.3340
(2011), 10p.
[30] A. Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant,
Michigan Math. J. 52 (2004), 289–308.
[31] A. Dubouloz, S. Lamy, Automorphisms of open surfaces with irreducible boundary, Osaka J.
Math. 52 (2015), 747–791.
[32] E. B. Dynkin, Maximal subgroups of the classical groups (Russian). Trudy Moskov. Mat. Obsc.
1 (1952), 39–166. English translation in: Amer. Math. Soc. Transl. 6 (1957), 245–378.
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